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Abstract: Deformations of quantum field theories which preserve Poincaré covariance
and localization in wedges are a novel tool in the analysis and construction of model
theories. Here a general scenario for such deformations is discussed, and an infinite
class of explicit examples is constructed on the Borchers-Uhlmann algebra underlying
Wightman quantum field theory. These deformations exist independently of the space-
time dimension, and contain the recently studied warped convolution deformation as a
special case. In the special case of two-dimensional Minkowski space, they can be used
to deform free field theories to integrable models with non-trivial S-matrix.

1. Introduction

In the last years, many new quantum field theoretic models have been constructed
with non-standard methods [Sch97,SW00,BGL02,Lec03,LR04,Lec05,MSY06,GL07,
BS07,BS08,GL08,BLS10,LW10,DT10,Mor11]. Among the different approaches used
for constructing these models, a recurring theme is to start with a well-understood model
(like a free field theory), and then apply some kind of deformation to change it to a model
with non-trivial interaction. As is well known, it is extremely complicated to carry out
such a procedure on a non-perturbative level when requiring that it should keep the full
covariance, spectral and locality properties of quantum field theory intact. However,
interesting manageable examples do exist when the locality requirements are somewhat
weakened.

More precisely, there exist many models of quantum fields which are not point-like
localized, but rather localized in certain unbounded, wedge-shaped regions (wedges) in
Minkowski space [SW00,BGL02,Lec03,LR04,BS07,GL07,BLS10]. These models are
still fully Poincaré covariant and comply with Einstein causality inasmuch as observables
associated with spacelike separated wedges commute. Using the algebraic framework of
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quantum field theory [Haa96], it is also in principle possible [BL04] to extract all observ-
ables localized in bounded spacetime regions. Moreover, the localization in wedges is
sharp enough to consistently compute the two-particle scattering matrix [BBS01], and
decide if the constructed model exhibits non-trivial interaction.

In view of these facts, wedge-local quantum field theories have many of the charac-
teristic features of fully local quantum field theories, and understanding their structure
is an important intermediate step in the rigorous construction of interacting models.
It is therefore interesting to note that it is possible to construct wedge-local quantum
field theories non-perturbatively, and introduce non-trivial interaction by deformation
techniques.

A particular deformation of this kind, based on actions of the translation group,
is by now well understood. After its first appearance in the context of deformed free
field theories on non-commutative Minkowski space [GL07], it was generalized to an
operator-algebraic setting in [BS08], where it is known as warped convolution. In the
framework of Wightman field theories, this deformation manifests itself as a deforma-
tion of the tensor product of the testfunction algebra [GL08], and later on, the connection
to Rieffel’s strict deformation quantization [Rie92] was explored [BLS10]. By now, the
warped convolution technique has also successfully been applied to the deformation
of conformal field theories [DT10] and quantum field theories on curved spacetimes
[DLM11].

In this paper we start to explore more general deformations of wedge-local quantum
field theories. As a first scenario for such deformations, we focus here on Wightman
quantum field theories [SW64,Jos65]. Any Wightman quantum field theory is given by
a specific representation of the tensor algebra S over Schwartz’ function space S (Rd).
The deformations studied here are based on linear homeomorphisms ρ : S → S com-
muting with the natural Poincaré automorphisms αx,� on S , for (x,�) in a subgroup
of the Poincaré group which models the geometry of a reference wedge. We then equip
S with a family of new products, namely f, g �→ ρ−1(ρ( f ) ⊗ ρ(g)), and Lorentz
transforms thereof. Every single of these products provides only a trivial deformation of
the tensor product ⊗, but their interplay with the local structure of S gives rise to non-
trivial deformations of a net of algebras localized in wedges. If a compatibility condition
between ρ and a state ω on S is met, one can pass to suitable GNS representations,
where all twisted product structures are represented on the same Hilbert space. Here
we obtain new quantum field theoretic models, which are wedge-local under further
conditions on the deformation map ρ and the state ω.

In Sect. 2, we explain these deformations in a general setting. The main task of
finding interesting examples of deformation maps is taken up in Sect. 3. Here we con-
sider a simple class of such mappings ρ, given by sequences of n-point functions, and
their compatible states. We show that by carefully adjusting these n-point functions,
one arrives at an infinite class of deformations, leading to new Poincaré covariant and
wedge-local model theories in any number of space-time dimensions. These models are
investigated in more detail in Sect. 4, where Hilbert space representations of deformed
quantum fields are presented, and it is shown that they describe non-trivial interaction.
The two-particle S-matrix can be calculated explicitly, and depends on the deformation
parameter.

The representing quantum fields are typically unbounded operators. In Sect. 5 we
show how to pass from these fields to associated von Neumann algebras, and analyze
their Tomita-Takesaki modular structure.
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In Sect. 6, we consider the special case of two-dimensional Minkowski space. Here
our construction yields a known family of completely integrable quantum field theories.
It is shown that the structure of the deformation maps implies characteristic features
of the S-matrix, such as its analyticity and crossing properties. Section 7 contains our
conclusions.

2. Deformation Maps on the Borchers-Uhlmann Algebra

In this section, we formulate a general deformation scenario for Wightman quantum
field theories, based on the tensor algebra S over the Schwartz space S (Rd). We will
assume that the space-time dimension d ≥ 1 + 1 is even, as this slightly simplifies our
discussion in some places. Most of the following can also be formulated in a vastly
more general setting of quite general topological ∗-algebras, but since the examples to
be discussed later make use of the specific structure of S , we restrict our considerations
to this particular algebra also in this section.

Let us first recall the structure of the Borchers-Uhlmann algebra S [Bor62,Uhl62]:
As a topological vector space, S = ⊕∞

n=0 Sn is the locally convex direct sum of the
Schwartz spaces Sn := S (Rnd), n ≥ 0, with S0 := C. Elements of S are thus
terminating sequences f = ( f0, f1, f2, . . . , fN , 0, . . . ), fn ∈ Sn . Equipped with the
tensor product,

( f ⊗ g)n(x1, . . . , xn) :=
n∑

k=0

fk(x1, . . . , xk) · gn−k(xk+1, . . . , xn), x1, . . . , xn ∈ R
d ,

(2.1)

∗-involution

f ∗
n(x1, . . . , xn) := fn(xn, . . . , x1), (2.2)

and unit 1n := δn,0, the linear space S becomes a unital topological ∗-algebra.
On S , the proper orthochronous Poincaré group acts by the continuous automor-

phisms

(αa,� f )n(x1, . . . , xn) := fn(�
−1(x1 − a), . . . , �−1(xn − a)), (a,�) ∈ P↑

+ .

(2.3)

For our purposes, it is advantageous to implement time-reversing Lorentz transfor-
mations by anti linear maps on S . In particular, the reflection j (x0, . . . , xd−1) :=
(−x0,−x1, x2, . . . , xd−1) acts on S according to

(α j f )n(x1, . . . , xn) := fn( j x1, . . . , j xn),

and yields an extension of α to an automorphic action of the proper Poincaré group P+

on S (antilinear for P↓
+ ).

We define the support supp f of an element f ∈ S as the smallest closed set O
in R

d such that supp fn ⊂ O×n for all n ≥ 1. Given O ⊂ R
d and fn ∈ Sn , we will

also write supp fn ⊂ O or fn ∈ Sn(O) instead of supp fn ⊂ O×n . With this definition
of support, the set S (O) := { f ∈ S : supp f ⊂ O} is a unital ∗-subalgebra of S ,
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for any O ⊂ R
d . Since suppαx,�( f ) = � supp f + x , the automorphisms αx,� act

covariantly on the net O �→ S (O),

αx,�(S (O)) = S (�O + x). (2.4)

This net becomes local, i.e., subalgebras S (O1), S (O2) ⊂ S associated with space-
like separated regions O1 ⊂ O ′

2 commute, after dividing by the so-called locality ideal
[Bor62,Yng84], the two-sided ideal L ⊂ S generated by all commutators f1 ⊗ g1 −
g1 ⊗ f1, with f1, g1 ∈ S1 having spacelike separated supports.

We will consider states on S subsequently, and introduce here some notation regard-
ing GNS representations. For a state ω on S , we write (Hω, φω,	ω) for the GNS triple
associated with (S , ω), and Dω := φω(S )	ω ⊂ Hω for the (dense) domain of the
representing field operators. The equivalence classes { f + g ∈ S : ω(g∗ ⊗ g) = 0}
will be denoted 
ω( f ) ∈ Dω. Thus 
ω(1) = 	ω, and the fields act on Dω according
to φω( f )
ω(g) = 
ω( f ⊗ g). As φω is a representation, we have φω( f )φω(g) =
φω( f ⊗ g) and φω( f )∗ ⊃ φω( f ∗). The represented localized field algebras are denoted
Pω(O) := φω(S (O)), O ⊂ R

d .
Quantum field theories arise from the tensor algebra S as GNS-representations in

suitable states [SW64]. For a stateω which vanishes on the locality ideal L , field opera-
tors φω( f ) and φω(g) commute on Dω if the supports of f and g are spacelike separated.
If ω is also invariant under the automorphisms αx,� (invariant up to a conjugation for
time-reversing �), there also exists an (anti-)unitary representation Uω of the proper
Poincaré group on Hω which implements the automorphisms αx,�. In this case, we
obtain the familiar structure of a covariant net of local ∗-algebras:

Pω(O1) ⊂ Pω(O2) for O1 ⊂ O2,

Uω(x,�)Pω(O)Uω(x,�)
−1 = Pω(�O + x), (2.5)

[Pω(O1), Pω(O2)] Dω = 0 for O1 ⊂ O ′
2,

where O ′
2 denotes the causal complement of O2 in R

d . For vacuum states, one is inter-
ested in the situation where the translations x �→ Uω(x, 1) fulfill the spectrum condition.
In this case, also a Reeh-Schlieder property holds, i.e., the subspace Pω(O)	ω is dense
in Hω for any open region O ⊂ R

d .
On a technical level, note that the field operators φω( f ), f ∈ S , are densely defined

on the common Uω-invariant domain Dω and closable, but in general unbounded. Several
conditions on ω are known which imply that one can pass from such a net of unbounded
operators to nets of von Neumann algebras on Hω [BZ63,DSW86,Buc90,BY90]. We
will however not deal with this question here, and consider only algebras of unbounded
operators.

The construction of states which annihilate L and satisfy the spectrum condition has
proven to be extremely difficult. In more than two space-time dimensions, only states
leading to (generalized) free field theories are known. In view of these difficulties, we
will not attempt a direct construction of quantum field theories by finding suitable states
ω on S , but rather use a deformation approach.

To explain this approach, we first recall that in the construction of many models dis-
cussed in the recent literature [Bor92,BGL02,Lec03,LR04,BS07,GL07,Lec08,BLS10,
DT10,Mun10], a specific weakened version of the net structure (2.5) plays a prominent
role. Instead of algebras Pω(O) associated with arbitrarily small spacetime regions O ,
one considers only specific regions, so-called wedges. Recall that the right wedge is the
region W0 := {(x0, . . . , xd−1) ∈ R

d : x1 > |x0|}, and the set W of all wedges is the
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Poincaré orbit of W0, i.e., W := {�W0 +x : (x,�) ∈ P+}. In particular, the causal com-
plement W ′ of a wedge W ∈ W is also contained in W , and for our reference region W0,
there holds W ′

0 = −W0 = jW0, with j (x0, . . . , xd−1) := (−x0,−x1, x2, . . . , xd−1)

the reflection at the edge of W0.
In the context of the GNS data Dω ⊂ Hω, Uω described before, a wedge-local quan-

tum field theory is defined to be a collection of ∗-algebras Pω(W ), W ∈ W , consisting
of operators defined on Dω, such that the properties (2.5) hold for O, O1, O2 ∈ W . Since
W consists only of a single Poincaré orbit, such a net can be equivalently characterized
in terms of a single algebra [BS08,BW92] P0 of operators acting on Hω by requiring

Uω(x,�)P0Uω(x,�)
−1 ⊂ P0 for �W0 + x ⊂ W0, (2.6)

[Uω(0, j)P0Uω(0, j), P0]Dω = 0. (2.7)

It is then straightforward to verify that P(�W0 + x) := U (x,�)P0U (x,�)−1 defines
a wedge-local quantum field theory (A simple causal net in the terminology of [BW92]).

Clearly any net O �→ Pω(O) (2.5) also defines such a wedge algebra P0. But, as we
shall see, an algebra P0 satisfying the conditions (2.6) and (2.7) with respect to a given
representation Uω of P+ is much easier to construct than a full net (2.5). Moreover, after
passing to a net of von Neumann algebras, one can in principle extract algebras of observ-
ables localized in arbitrary spacetime regions from these data [BS08,Bor92,BL04].

In the deformation approach, one takes the point of view that a fully local and covari-
ant quantum field theory in the sense of (2.5) is given. These data will usually be realized
by free field theories, and in particular define an operator algebra P0 and a representa-
tion Uω in a suitable relative position on some Hilbert space Hω. One then keeps Hω and
Uω fixed, and changes (deforms) the algebra P0 in such a manner that (2.6) and (2.7)
remain valid. For suitably chosen deformations, this process leads to inequivalent nets,
and in particular turns interaction-free theories into models with non-trivial interaction.

To find examples of deformations preserving the two conditions (2.6) and (2.7), one
possible approach is to take the point of view that a deformation of an algebra is a
deformation of the product of that algebra. This is the approach taken in the deforma-
tion theory of algebras in the mathematics literature [Ger64], which has already led to
deformations of quantum field theories in certain examples [GL08,BS08,BLS10].

By a product on S , we will always mean a bilinear separately continuous map
f, g �→ f ⊗̂ g, which is associative and moreover compatible with the unit and star
involution in S , i.e.,

f ⊗̂ 1 = f = 1 ⊗̂ f, f ∈ S , (2.8)

( f ⊗̂ g)∗ = g∗ ⊗̂ f ∗, f, g ∈ S . (2.9)

The structure of the family of such products clearly depends on the structure of the
algebra under consideration. In the situation at hand, where S is a tensor algebra, it is
known that S is rigid in the sense of algebraic deformation theory [Ger64]. That is, all
products ⊗̂ on S are of the form

f ⊗̂ g = ρ−1(ρ( f )⊗ ρ(g)) =: f ⊗ρ g, (2.10)

where ρ : S → S is a linear homeomorphism with ρ(1) = 1 and ρ( f )∗ = ρ( f ∗).
Clearly, the algebra S ρ := (S ,⊗ρ) given by the linear space S , endowed with the
product ⊗ρ , and unchanged unit and involution, is isomorphic as a unital ∗-algebra to
S . This is the reason why products of the form (2.10) are considered trivial in the defor-
mation theory of single algebras [Ger64], and S is rigid. But we will see later that the
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use of such trivial deformations will result in non-trivial deformations of nets of wedge
algebras nonetheless, as also the local structure of S matters here.

For deformations compatible with localization in wedges, the invariance property
(2.6) suggests to require a certain amount of compatibility between the deformation
map ρ and the Poincaré action α. We therefore make the following definition.

Definition 2.1. A deformation map (relative to W0) is a linear homeomorphism ρ :
S → S such that

i) ρ(1) = 1.
ii) ρ( f )∗ = ρ( f ∗), f ∈ S .

iii) ρ ◦ αx,� = αx,� ◦ ρ for all (x,�) ∈ P+ with �W0 + x ⊂ W0.

We remark that the third condition in this definition is equivalent to

ρ ◦ αx,� = αx,� ◦ ρ for all x ∈ R
d and all � with �W0 = W0. (2.11)

This is due to the special form of the wedge regions: First, there holds W0 + x ⊂ W0
for all x ∈ W0. Hence αx ◦ ρ = ρ ◦ αx for all x ∈ W0. Multiplying by α−x from both
sides, we see that this equation also holds for x ∈ −W0. As any y ∈ R

d can be written
as y = x + x ′ with x ∈ W0 and x ′ ∈ −W0, this implies that ρ must commute with
all translations. Second, if a Poincaré transformation (x,�)maps W0 inside itself, then
necessarily �W0 = W0 [TW97]. This explains the equivalence of (2.11) with Defini-
tion 2.1 iii). To summarize, a deformation map has to preserve the linear, topological,
unital, and ∗-structure of S , and commute with the automorphisms αx,� for (x,�) in
a specific subgroup of P+, which models the geometry of the wedge region W0.

The properties required in Definition 2.1 are stable under composition and taking
inverses. With identity as the identity map on S , the deformation maps therefore form
a group R. In deformation theory, one is usually interested in studying certain one-
parameter families ρλ ∈ R, λ ∈ R, such that λ �→ ρλ is continuous in an appropriate
sense, and ρ0 = id. We will see examples of such one parameter families in Sect. 3. For
the present general considerations, it will be sufficient to consider deformation maps as
such, without introducing a deformation parameter.

Given any deformation map, the product (2.10) will be referred to as the associated
deformed product on S . In view of Definition 2.1 iii), the maps α� with �W0 = W0
act as automorphisms also with respect to the product ⊗ρ . For general� ∈ L+, one has
α�( f ⊗ρ g) = α�( f ) ⊗ρ� α�(g), where ρ� := α� ◦ ρ ◦ α−1

� is a deformation map
relative to�W0, and in general ρ� �= ρ. We therefore obtain a whole family of products
⊗ρ� , parametrized by the Lorentz group modulo the stabilizer group of the wedge. This
family includes in particular the opposite deformation map

ρ′ := α j ◦ ρ ◦ α j . (2.12)

To construct a wedge-local quantum field theory from this family of deformed products,
we have to represent all the algebras (S ,⊗ρ�), � ∈ L+, on a common Hilbert space.
This is possible in specific GNS representations.

Definition 2.2. A state ω on S is called compatible with a deformation map ρ if

ω( f ⊗ρ g) = ω( f ⊗ g), f, g ∈ S . (2.13)
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Note that this definition does not imply that multiple deformed products reduce to
undeformed products in ω, i.e., in general ω( f1 ⊗ρ . . .⊗ρ fn) �= ω( f1 ⊗ . . .⊗ fn) for
n > 2. We are interested in compatible states because they produce common represen-
tation spaces for deformed and undeformed tensor products via the GNS construction.

Proposition 2.3. Let ρ be a deformation map and ω a ρ-compatible state. Then ω is
also a state on S ρ , and the GNS triples (Hω, φω,	ω) of (S , ω) and (Hρ

ω, φ
ρ
ω,	

ρ
ω) of

(S ρ, ω) are related by

Hρ
ω = Hω, (2.14)

	ρω = 	ω, (2.15)

φρω( f )φω(g)	ω = φω( f ⊗ρ g)	ω, f, g ∈ S . (2.16)

Proof. The state ω on S clearly defines a normalized linear functional f �→ ω( f ) on
S ρ . The ρ-compatibility and positivity of ω imply, f ∈ S ,

ω
(

f ∗ ⊗ρ f
) = ω( f ∗ ⊗ f ) ≥ 0.

Hence ω is also a state on the deformed algebra S ρ .
To verify the statements about the GNS representations of (S , ω) and (S ρ, ω), let

Nω := { f ∈ S : ω( f ∗⊗ f ) = 0} and N ρ
ω := { f ∈ S : ω( f ∗⊗ρ f ) = 0} denote the

respective Gelfand ideals. Since ω is ρ-compatible, we have ω( f ∗ ⊗ρ f ) = ω( f ∗ ⊗ f ),
and hence N ρ

ω = Nω as linear spaces. As also S and S ρ coincide as linear spaces, we
have S /Nω = S ρ/N ρ

ω . By the ρ-compatability of ω, these pre-Hilbert spaces carry
the same scalar product 〈
ω( f ),
ω(g)〉 = ω( f ∗ ⊗g) = ω( f ∗ ⊗ρ g), which implies in
particular that their Hilbert space closures Hω and Hρ

ω are identical. The implementing
vectors	ω and	ρω are both equal to the equivalence class
ω(1) = 


ρ
ω(1) and therefore

identical.
The GNS representation φρω of S ρ acts on this space according to, f, g ∈ S ,

φρω( f )φω(g)	ω = φρω( f )
ω(g) = 
ω( f ⊗ρ g) = φω( f ⊗ρ g)	ω. (2.17)

This is well-defined since Nω is, by the preceding argument, also a left ideal with respect
to the deformed product, and the proof is finished. ��

We now explain how wedge-local quantum field theories can be constructed from
deformation maps ρ. To this end, suppose ρ is a deformation map, and ω is a ρ-com-
patible state which is invariant under α in the sense that, f ∈ S ,

ω(αx,�( f )) =
{
ω( f ); (x,�) ∈ P↓

+

ω( f ); (x,�) ∈ P↑
+

. (2.18)

We then have, f, g ∈ S , � ∈ L↑
+,

ω( f ⊗ρ� g) = ω(α�(α
−1
� ( f )⊗ρ α

−1
� (g))) = ω(α−1

� ( f )⊗ρ α
−1
� (g))

= ω(α−1
� ( f )⊗ α−1

� (g)) = ω( f ⊗ g),

and by an analogous calculation, also ω( f ⊗ρ� g) = ω( f ⊗ g) for � ∈ L↓
+. Hence the

state ω is compatible with all Lorentz transformed deformation maps ρ�, � ∈ L+. In
view of Proposition 2.3, all these deformations are thus realized on the GNS space of
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the undeformed algebra, and can be compared in terms of the Hilbert space operators
φ
ρ�
ω ( f ) on Dω ⊂ Hω.

It is clear from our construction that the (anti-)unitary representation Uω implement-
ing α on Hω satisfies Uω(x,�)
ω( f ) = 
ω(αx,� f ), (x,�) ∈ P+, f ∈ S . After a
small calculation making use of φρ�ω ( f )
ω(g) = 
ω( f ⊗ρ� g) (2.16), this yields the
transformation law

Uω(x,�)φ
ρ
ω( f )Uω(x,�)

−1 = φρ�ω (αx,� f ), (x,�) ∈ P+, f ∈ S . (2.19)

In particular, for those transformations (x,�) that satisfy �W0 + x ⊂ W0, the corre-
sponding automorphisms commute with ρ (Definition 2.1 iii)), and we have

Uω(x,�)φ
ρ
ω( f )Uω(x,�)

−1 = φρω(αx,� f ), �W0 + x ⊂ W0, f ∈ S . (2.20)

To produce a wedge-localized algebra complying with (2.6) and (2.7), we have to
use elements f ∈ S with support in W0. As the deformation map ρ will usually not
preserve supports, S (W0) will not be an algebra with respect to the deformed product
⊗ρ . We therefore consider the ∗-algebra Pρ

ω,0 generated by all φρω( f ), f ∈ S (W0).
The transformation law (2.20) then implies the desired invariance (2.6) of Pρ

ω,0.
The crucial locality condition (2.7) is equivalent to the vanishing of the commutators

[φρω( f ), φρ
′
ω (g

′)]
 = 0, f ∈ S (W0), g ∈ S (W ′
0),
 ∈ Dω. (2.21)

We will say that a deformation map ρ is wedge-local in a state ω which is compatible
with ρ and ρ′ if (2.21) holds. In this case, the algebra Pρ

ω,0 complies with (2.6) and
(2.7), and can therefore be used to generate a quantum field theory model.

To illustrate the conditions on the interplay of ρ andω, we recall that the deformation
map given by warped convolution [GL08] is compatible with all translationally invari-
ant states on S . But the locality condition (2.21) is only valid if ω annihilates L , the
translations Uω(x, 1) satisfy a spectrum condition, and the parameters defining ρ are
suitably chosen [GL08,BLS10]. Hence the validity of (2.21) is not a property of ρ alone,
but also involves properties of ω going beyond compatibility and vanishing on L .

In the present generality, it seems to be difficult to find manageable conditions on
ρ and ω which imply that ρ is wedge-local in ω. We will therefore present in the next
section a family of explicit deformation maps ρ together with their compatible states ω
such that ρ is wedge-local in ω. Before moving on to the examples, we point out that the
wedge-locality condition amounts to the vanishing of matrix elements of commutators
with respect to the undeformed product, a result that will be useful later on.

Lemma 2.4. Let ρ be a deformation map and ω a state on S which is compatible with
ρ and ρ′. Then ρ is wedge-local in ω if and only if

ω((h ⊗ρ f )⊗ (g′ ⊗ρ′ k)) = ω((h ⊗ρ′ g′)⊗ ( f ⊗ρ k)) (2.22)

for all f ∈ S (W0), g′ ∈ S (W ′
0), h, k ∈ S .

Proof. Forρ to be wedge-local inω, we need to show [φρω( f ), φρ
′
ω (g′)]
 = 0 for all
 ∈

Dω, f ∈ S (W0), g′ ∈ S (W ′
0). Since Dω = φω(S )	ω is dense in Hω, this is equiva-

lent to the vanishing of the matrix elements 〈	ω, φω(h)[φρω( f ), φρ
′
ω (g′)]φω(k)	ω〉 = 0
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for arbitrary h, k ∈ S . But in view of the compatibility of ρ, ρ′ with ω, and the asso-
ciativity of the products ⊗ρ, ⊗ρ′ , we can rewrite these matrix elements as

0 = 〈	ω, φω(h)[φρω( f ), φρ
′
ω (g

′)]φω(k)	ω〉
= 〈	ω, φω(h)φω( f ⊗ρ (g

′ ⊗ρ′ k))	ω〉 − 〈	ω, φω(h)φω(g′ ⊗ρ′ ( f ⊗ρ k))	ω〉
= ω(h ⊗ ( f ⊗ρ (g

′ ⊗ρ′ k)))− ω(h ⊗ (g′ ⊗ρ′ ( f ⊗ρ k)))

= ω(h ⊗ρ f ⊗ρ (g
′ ⊗ρ′ k))− ω(h ⊗ρ′ g′ ⊗ρ′ ( f ⊗ρ k))

= ω((h ⊗ρ f )⊗ρ (g
′ ⊗ρ′ k))− ω((h ⊗ρ′ g′)⊗ρ′ ( f ⊗ρ k))

= ω((h ⊗ρ f )⊗ (g′ ⊗ρ′ k))− ω((h ⊗ρ′ g′)⊗ ( f ⊗ρ k)).

As the last expression is identical to (2.22), the proof is finished. ��

3. Multiplicative Deformations and their Compatible States

We now turn to the task of finding examples of deformation maps ρ which meet our
requirements. It will be convenient to work in momentum space most of the time, i.e.,
we consider the Fourier transform f �→ f̃ on S ,

f̃n(p1, . . . , pn) := (2π)−nd/2
∫

dd x1 · · · dd xn fn(x1, . . . , xn) eip1·x1 · · · eipn ·xn .

This map preserves the linear and product structure of S as well as its identity element.
Furthermore, the Fourier transform commutes with the action of the orthochronous
Lorentz transformations, and thus L↑

+ acts on the momentum space wave functions in
the same manner as in (2.3). Translations, the ∗-involution, and the reflection at the edge
of the wedge take the form, p1, . . . , pn ∈ R

d ,

(̃αx f )n(p1, . . . , pn) = ei(p1+···+pn)·x · f̃n(p1, . . . , pn), (3.1)

f̃ ∗
n(p1, . . . , pn) = f̃n(−pn, . . . ,−p1), (3.2)

(̃α j f )n(p1, . . . , pn) = f̃n(− j p1, . . . ,− j pn). (3.3)

After these remarks, we consider deformation maps ρ : S → S in the sense of
Definition 2.1. In view of the structure of S , every such map is given by a family of
(distributional) integral kernels ρnm, n,m ∈ N0, such that, fn ∈ Sn ,

ρ̃( fn)m(p1, . . . , pm) =
∫

dq1 · · · dqn ρnm(q1, . . . , qn; p1, . . . , pm) f̃n(q1, . . . , qn).

(3.4)

The defining properties of a deformation map restrict the possible form of the distribu-
tions ρnm . For example, property iii) of Definition 2.1 requires the support of ρnm to be
contained in {(q1, . . . , qn, p1, . . . , pm) : q1 + · · · + qn + p1 + · · · + pm = 0}, similar to
the energy-momentum conservation of S-matrix elements.

A systematic study of deformation maps and the emerging deformed quantum field
theories will be presented elsewhere. Here we consider a particularly simple class of
maps ρ : S → S which preserve the grading of S and act multiplicatively in momen-
tum space, i.e., are of the form

ρ̃( f )n(p1, . . . , pn) = ρn(p1, . . . , pn) · f̃n(p1, . . . , pn), n ∈ N0, f ∈ S . (3.5)
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We will refer to deformation maps of this type as multiplicative deformations. They form
an abelian subgroup, denoted R0, of the group R of all deformation maps. Givenρ ∈ R0,
the functions ρn (3.5) are called the n-point functions of ρ, and it is straightforward to
characterize ρ in terms of the ρn .

Lemma 3.1. The group R0 of multiplicative deformations of S consists precisely of
those sequences ρn ∈ C∞(Rnd), n ∈ N0, of smooth functions which satisfy the follow-
ing conditions:

i) For each multi index µ ∈ N
nd
0 , there exist Nµ ∈ R and Cµ > 0 such that

|∂µρn(p1, . . . , pn)| ≤ Cµ (1 + |p1|2 + · · · + |pn|2)Nµ , p1, . . . , pn ∈ R
d .

(3.6)

ii) There exists M ∈ R and C ′ > 0 such that

|ρn(p1, . . . , pn)| ≥ C ′ (1 + |p1|2 + · · · + |pn|2)−M , p1, . . . , pn ∈ R
d . (3.7)

iii) For each Lorentz transformation � with �W0 = W0,

ρn(�p1, . . . , �pn) = ρn(p1, . . . , pn), p1, . . . , pn ∈ R
d .

iv) ρn is ∗-invariant,

ρn(−pn, . . . ,−p1) = ρn(p1, . . . , pn), p1, . . . , pn ∈ R
d .

v) ρ0 = 1.

Proof. The first two conditions i), ii) are necessary and sufficient for ρ to be a homeo-
morphism on S : Let us first assume i), ii) hold. Then, by condition i), fn �→ ρn · fn
maps Sn into Sn . Moreover, this map is linear and it is straightforward to see that it is
continuous in the Schwartz topology. By condition ii), the ρn are in particular non-van-
ishing, and the reciprocals 1/ρn are polynomially bounded by (3.7). It now follows by
application of the chain rule that all derivatives of 1/ρn satisfy polynomial bounds of
the form (3.6). Hence fn �→ fn/ρn is also a continuous linear map from Sn onto Sn ,
with inverse ρn .

The map ρ : S → S on the direct sum S = ⊕n Sn is continuous iff its restric-
tion to Sn is continuous for each n [Tre67]. But the restriction of ρ to Sn maps this
space continuously onto Sn , which in turn is continuously embedded in S . Hence ρ is
continuous, and by the same argument, one sees that ρ−1 is continuous as well. Thus ρ
is a linear homeomorphism, as required in Definition 2.1.

Conversely, let us now assume that ρ defined as in (3.5) is a homeomorphism of S .
For such a multiplicative transformation to map Sn onto Sn , it is necessary that ρn is
smooth and polynomially bounded in all derivatives, i.e., i) holds. Since ρ−1 has the
same properties, also ii) follows.

Condition iii) is equivalent to α� ◦ ρ = ρ ◦ α� for � with �W0 = W0, as a short
calculation based on (3.5) and (2.3) shows. Translational invariance imposes no further
restrictions on ρ since both ρ and the translations act multiplicatively in momentum
space and therefore commute automatically.

Using (3.5) and (3.2), one easily checks that iv) is equivalent to ρ( f ∗) = ρ( f )∗, f ∈
S . Since ρ(1)0 = ρ0, condition v) is equivalent to ρ(1) = 1. ��
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Remark. For ρ ∈ R0, the opposite deformation ρ′ = α j ◦ ρ ◦ α j is given by the n-point
functions ρ′

n(p1, . . . , pn) = ρn(− j p1, . . . ,− j pn). But as the Lorentz transformation

− j maps the wedge W0 onto itself, and − j ∈ L↑
+ because d is even, we can use the

invariance stated in part iii) of Lemma 3.1 to rewrite the n-point functions of the opposite
deformation as

ρ′
n(p1, . . . , pn) = ρn(p1, . . . , pn). (3.8)

The inverse ρ−1 of a multiplicative deformation ρ ∈ R0 is given by the reciprocal
n-point functions 1/ρn , and thus the product f ⊗ρ g = ρ−1(ρ( f ) ⊗ ρ(g)) takes the
following simple form in momentum space,

˜( f ⊗ρ g)n(p1, .., pn) =
n∑

k=0

ρk(p1, .., pk)ρn−k(pk+1, .., pn)

ρn(p1, .., pn)

× f̃k(p1, .., pk)g̃n−k(pk+1, .., pn). (3.9)

It is clear from the conditions spelled out in Lemma 3.1 that many multiplicative defor-
mation maps exist. However, differentρ, ρ̂ ∈ R0 might induce the same product (3.9) on
S . We therefore introduce an equivalence relation on R0 by defining ρ, ρ̂ as equivalent,
in symbols ρ ∼ ρ̂, if f ⊗ρ g = f ⊗ρ̂ g for all f, g ∈ S . A multiplicative deformation
ρ ∈ R0 is called trivial if ρ ∼ id.

Lemma 3.2. i) Two deformations ρ, ρ̂ ∈ R0 are equivalent if and only if ρ̂ρ−1 is
trivial.

ii) A deformation ρ ∈ R0 is trivial if and only if ρn = ρ⊗n
1 , n ∈ N.

iii) Let ρ ∈ R0. Then there exists another ρ̂ ∈ R0 with ρ̂1 = 1 and ρ̂ ∼ ρ.

Proof. i) Assume ρ ∼ ρ̂. Then ρ−1(ρ( f ) ⊗ ρ(g)) = ρ̂−1(ρ̂( f ) ⊗ ρ̂(g)) for all
f, g ∈ S , or, equivalently, f ⊗ρ̂ρ−1 g = (ρρ̂−1)((ρ̂ρ−1)( f )⊗(ρ̂ρ−1)(g)) = f ⊗g.
Hence ρ̂ρ−1 is trivial. If, on the other hand, ρ̂ρ−1 ∼ id, then (ρρ̂−1)((ρ̂ρ−1)( f )⊗
(ρ̂ρ−1)(g)) = f ⊗ g, and ρ ∼ ρ̂ follows.

ii) The triviality condition ρ−1(ρ( f ) ⊗ ρ(g)) = f ⊗ g, f, g ∈ S , is satisfied if and
only if ρ is an automorphism of S . As ρ is taken to be multiplicative here, it is an
automorphism if and only if ρn = ρ⊗n

1 , n ∈ N.
iii) Let ρ ∈ R0. Then ρ1 satisfies the conditions i)–iv) in Lemma 3.1 for n = 1, and

it is easy to check that for n ≥ 1, also the functions σn := 1/ρ⊗n
1 comply with

these conditions. With σ0 := 1, this defines a multiplicative deformation σ ∈ R0
which is trivial by part ii). According to part i), ρ̂ := σρ is equivalent to ρ, and
ρ̂1 = ρ1/ρ1 = 1. ��
In view of the last statement, the redundancy in describing deformed products of

the form (3.9) by n-point functions ρn is precisely taken into account by restricting to
multiplicative deformations ρ ∈ R0 with trivial one point function ρ1 = 1. We shall
therefore consider only such ρ in the following.

Following the general strategy explained in Sect. 2, we next investigate the compat-
ibility of ρ ∈ R0 with certain states ω on S (Definition 2.2). That is, we need to find
physically relevant states such that ω( f ⊗ρ g) = ω( f ⊗ g) for all f, g ∈ S . Each state
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on S is given by a sequence of distributions ωn ∈ S ′
n, n ∈ N, its n-point functions,

and ω0 = 1. In momentum space, we have

ω( f ) =
∞∑

n=0

∫

dp1 · · · dpn ω̃n(−p1, . . . ,−pn) f̃n(p1, . . . , pn), f ∈ S . (3.10)

Inserting (3.9) into the condition ω( f ⊗ρ g) = ω( f ⊗ g), we observe that if the ω̃n are
measures, compatibility of ω with ρ is equivalent to the factorization

ρn(p1, . . . , pn) = ρk(p1, . . . , pk) · ρn−k(pk+1, . . . , pn)

for all (p1, . . . , pn) ∈ −supp ω̃n, (3.11)

for all n, k ∈ N0, k ≤ n. For more singular distributions ω̃n , compatibility of ω with ρ
poses also conditions on the derivatives of the ρn .

As the momentum space supports of n-point functions play a role in the compatibility
question, we proceed with some remarks about relevant examples from quantum field
theory. A large class of states of interest is the class of all translationally invariant states,
satisfying ω ◦ αx = ω for all x ∈ R

d . Their n-point functions have support at zero
energy-momentum, that is,

supp ω̃n ⊂ Sn
inv := { p ∈ R

nd : p1 + · · · + pn = 0}. (3.12)

As vacuum states in quantum field theory, one considers the subclass of transla-
tionally invariant states satisfying the spectrum condition. These are given by n-point
functions with [Bor62]

supp ω̃n ⊂ Sn
Spec :={ p ∈ R

nd : p1, p1 + p2, . . . , p1 + · · · + pn−1 ∈ V+,

p1 + · · · + pn = 0}, (3.13)

where V+ = {q ∈ R
d : q · q ≥ 0, q0 ≥ 0} is the closed forward light cone.

Special examples of states, related to generalized free field models, are given by quasi-
free states, which are completely determined by their two-point function ω2. Recall that
a state ω on S is called quasi-free if

ω̃2n−1 = 0, ω̃2n(p1, . . . , p2n) =
∑

(l,r)

n∏

k=1

ω̃2(plk , prk ), n ∈ N, (3.14)

where the sum runs over all partitions (l, r) of {1, . . . , 2n} into disjoint tuples
(l1, r1), . . . , (ln, rn) with lk < rk, k = 1, . . . , n. For quasi-free translationally invariant
states ω, we have supp ω̃2n−1 = ∅, and

supp ω̃2n ⊂ S2n
qf :=

⋃

(l,r)

{ p ∈ R
2nd : plk + prk = 0, k = 1, . . . , n}. (3.15)

In view of the positivity ω2( f ∗
1 ⊗ f1) ≥ 0, f1 ∈ S1, we can apply Bochner’s theorem

to conclude that ω̃2 is a measure. Taking into account the special structure of the n-point
functions (3.14), it then follows that each ω̃n is a measure. In particular, the compati-
bility of a translationally invariant quasi-free state with a multiplicative deformation is
equivalent to the factorization condition (3.11).
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Finally, translationally quasi-free states satisfy in addition the spectrum condition if
and only if supp ω̃2 ⊂ {(p, q) ∈ R

2d : p ∈ V+, p + q = 0}. In this last case, ω2 can be
represented as

ω̃2(p, q) = δ(p + q) w(p), (3.16)

where w is a measure on V+.
It turns out that it is a very strong condition to require a multiplicative deformation

to be compatible with all translationally invariant states, or all translationally invariant
states satisfying the spectrum condition. In fact, since there exist sufficiently many such
states on S [Yng81], these conditions are equivalent to requiring (3.11) to hold on all of
Sn

inv (3.12). As a necessary condition for compatibility, this yields a recursive equation
determining the n-point functions ρn, n ≥ 2, in terms of the two point function ρ2.
In addition, several algebraic relations for ρ2 have to be satisfied for (3.11) to hold.
One special solution, corresponding to Rieffel deformations and warped convolutions,
exists, and will be recalled later on. The most general deformation two-point function
complying with these conditions is presently not known, but it seems that there is little
freedom for obtaining other deformations ρ ∈ R0 compatible with all translationally
invariant states.1

Instead of asking for compatibility of ρ with all translationally invariant states, we
will consider in the following the less restrictive condition that ρ should be compatible
with all quasi-free translationally invariant states. This amounts to requiring (3.11) to
hold on the smaller domain Sn

qf (3.15). We will see that an infinite family of such ρ
exists, providing non-trivial deformations of generalized free field theories.

Also in the case of multiplicative deformations which are compatible with quasi-free
translationally invariant states, the n-point functions ρn are determined by the two-point
function ρ2. In the following proposition, we show under which conditions on ρ2 the
required compatibility holds. Explicit solutions of these conditions on ρ2 are then dis-
cussed in Lemma 3.5.

Proposition 3.3. Let ρ2 ∈ C∞(Rd × R
d) be a two-point function of a multiplicative

deformation, satisfying conditions i)–iv) of Lemma 3.1 for n = 2, and in addition,
p, q ∈ R

d ,

ρ2(p,−p) = 1, ρ2(−p, q) = ρ2(p,−q) = ρ2(q, p) = ρ2(p, q)−1. (3.17)

Define

ρ0 := 1, ρ1(p1) := 1, ρn(p1, . . . , pn) :=
∏

1≤l<r≤n

ρ2(pl , pr ), n ≥ 2.

(3.18)

Then

i) The n-point functions (3.18) define a multiplicative deformation ρ ∈ R0.
ii) The deformed product associated with ρ has the form

˜( f ⊗ρ g)n(p1, .., pn) =
n∑

k=0

(
k∏

l=1

n∏

r=k+1

ρ2(pl , pr )
−1

)

× f̃k(p1, .., pk) g̃n−k(pk+1, .., pn). (3.19)

1 S. Alazzawi, work in progress.
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iii) Let ω be a quasi-free translationally invariant state on S . Then ρ (3.18) and ρ−1

are compatible with ω, and for all fn ∈ Sn, k ∈ {0, . . . , n}, the functions

f̃n,k,±(p1, . . . , pn) := f̃n(p1, . . . , pn) ·
k∏

l=1

n∏

r=k+1

ρ2(pl , pr )
±1 (3.20)

have the same expectation value as fn in ω.
iv) The opposite deformation is ρ′ = ρ−1.

Proof. i) We have to check that the n-point functions (3.18) satisfy the conditions of
Lemma 3.1. Using the product formula (3.18), it is straightforward to verify that con-
ditions i)–iii) hold for all n ≥ 2. For iv), we note that ρ2(−q,−p) = ρ2(p, q) by the
∗-invariance of ρ2, and compute

ρn(−pn, . . . ,−p1) =
∏

1≤l<r≤n

ρ2(−pr ,−pl)

=
∏

1≤l<r≤n

ρ2(pl , pr ) = ρn(p1, . . . , pn).

Hence iv) holds, and by definition (3.18), also v) is satisfied. Thus ρ ∈ R0.
ii) Here we just have to insert the definition of ρn (3.18) into (3.9). Let n ∈ N0 and

k ∈ {0, . . . , n}. Then

ρk(p1, . . . , pk)ρn−k(pk+1, . . . , pn)

ρn(p1, . . . , pn)

=
∏

1≤l ′<r ′≤k ρ2(pl ′ , pr ′) ·∏k+1≤l ′′<r ′′≤n ρ2(pl ′′ , pr ′′)
∏

1≤l<r≤n ρ2(pl , pr )

=
k∏

l=1

n∏

r=k+1

ρ2(pl , pr )
−1, (3.21)

and (3.19) follows.
iii) For ρ to be compatible with all quasi-free translationally invariant states,

we will show that (3.21) equals 1 for even n = 2N , k ∈ {0, . . . , 2N }, and p ∈
−S2N

qf (3.15). Fixing such N , k, let (l, r) = {(l1, r1), . . . , (lN , rN )} be a partition

of {1, . . . , 2N } into pairs (l j , r j ) as in (3.15), and p ∈ R
2Nd with pl j + pr j = 0,

j = 1, . . . , N . We split the partition into three parts: First, the pairs (l j , r j ) with
l j , r j ≤ k, denoted {(l̂1, r̂1), . . . (l̂L , r̂L)}, second, the pairs (l j , r j ) with l j ≤
k < r j , denoted {(l̃1, r̃1), . . . , (l̃M , r̃M )}, and third, the pairs (l j , r j ) with k < l j ,

r j , denoted {(ľ1, ř1), . . . , (ľR, řR)}. Clearly, these sets are disjoint, and their union is
{(l1, r1), . . . , (lN , rN )}, i.e. in particular {l̂1, . . . , l̂L , r̂1, . . . , r̂L , l̃1, . . . , l̃M } = {1, . . . , k}
and {r̃1, . . . , r̃M , ľ1, . . . , ľR, ř1, . . . , řR} = {k + 1, . . . , 2N }.
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We now rewrite (3.21) using this splitting as well as the support condition pl j + pr j = 0
and the properties (3.17), which give

k∏

l=1

2N∏

r=k+1

ρ2(pl , pr )
−1 =

2N∏

r=k+1

⎛

⎝
L∏

i=1

(ρ2(pl̂i
, pr )

−1ρ2(pr̂i , pr )
−1) ·

M∏

j=1

ρ2(pl̃ j
, pr )

−1

⎞

⎠

=
2N∏

r=k+1

⎛

⎝
L∏

i=1

(ρ2(pl̂i
, pr )

−1ρ2(− pl̂i
, pr )

−1) ·
M∏

j=1

ρ2(pl̃ j
, pr )

−1

⎞

⎠

=
M∏

j=1

2N∏

r=k+1

ρ2(pl̃ j
, pr )

−1

=
M∏

j=1

(
R∏

t=1

(ρ2(pl̃ j
, pľt

)−1ρ2(pl̃ j
, přt )

−1)

M∏

i=1

ρ2(pl̃ j
, pr̃i )

−1

)

=
M∏

j=1

(
R∏

t=1

(ρ2(pl̃ j
, pľt

)−1ρ2(pl̃ j
,−pľt

)−1)

M∏

i=1

ρ2(pl̃ j
, pr̃i )

−1

)

=
M∏

j=1

M∏

i=1

ρ2(pl̃ j
, pl̃i

).

Using the ∗-invariance of ρ2, and (3.17), we get ρ2(p, p) = ρ2(−p,−p) =
ρ2(−p, p)

−1 = 1. Hence in the product
∏M

i, j ρ2(pl̃ j
, pl̃i

) the diagonal terms
ρ2(pl̃ j

, pl̃ j
) = 1 drop out. The off-diagonal terms appear in reciprocal pairs ρ2(pl̃i

, pl̃ j
)

and ρ2(pl̃ j
, pl̃i

) = ρ2(pl̃i
, pl̃ j

)−1, and therefore drop out as well. As the partition (l, r)
was arbitrary, the compatibility of ρ and ω follows.

Replacing ρ2 by 1/ρ2, we also have compatibility of ρ−1 and ω. The equation
ω( fn,k,±) = ω( fn) is just a reformulation of these compatibility statements.

iv) As ρ2 satisfies (3.17), and is invariant under the ∗-operation (3.2), we have

ρ2(p, q) = ρ2(−q,−p) = ρ2(q, p) = ρ2(p, q)−1.

In view of the product form of the ρn , this implies ρn = 1/ρn . But the n-point functions
of the opposite deformation ρ′ are the conjugates of the ρn (3.8). Hence ρ′ = ρ−1. ��

Having reduced the problem of finding deformations compatible with quasi-free
translationally invariant states to conditions on the two-point function ρ2, we next solve
these conditions by discussing suitable two-point functions. These will be realized in
terms of a deformation function R and an admissible matrix Q, defined below.

Definition 3.4. A deformation function is a smooth function R : R → C such that

i)

R(a)−1 = R(a) = R(−a), R(0) = 1, (3.22)
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ii) For each k ∈ N, there exists Ck, Nk > 0, such that

∣
∣
∣
∣
∂k R(a)

∂ak

∣
∣
∣
∣ ≤ Ck (1 + a2)Nk , a ∈ R, (3.23)

iii) The Fourier transform R̃ ∈ S ′
1 of R has support on the positive half line.

Note that the support restriction on R̃ amounts to requiring that R has an analytic con-
tinuation to the upper half plane. More precisely [RS75, Thm. IX.16], any deformation
function is the boundary value in the sense of S ′

1 of a function analytic in the upper half
plane, satisfying polynomial bounds at infinity and at the real boundary. Conversely, if
R is a function analytic on the upper half plane, satisfying suitable polynomial bounds,
then its distributional boundary value on the real line exists, and its Fourier transform
has support in the right half line. As concrete examples, consider the functions

R(a) = eica
N∏

k=1

zk − a

zk + a
, c ≥ 0, Imz1, . . . , ImzN ≥ 0, (3.24)

where with each zk , also −zk is contained in the set of zeros {z1, . . . , zN }. As these func-
tions satisfy the first two conditions of Definition 3.4, and furthermore have bounded
analytic continuations to the upper half plane, they are examples of deformation func-
tions.

Lemma 3.5. Let R be a deformation function, and let Q be a (d × d)-matrix which is
antisymmetric w.r.t. the Minkowski inner product on R

d , and satisfies

�Q�−1 =
{

Q ; � ∈ L↑
+ with �W0 = W0

−Q ; � ∈ L↓
+ with �W0 = W0

. (3.25)

Then the deformation two-point function

ρ2(p, q) := R(−p · Qq) (3.26)

satisfies all assumptions of Proposition 3.3.

Proof. Checking the conditions i)–iv) of Lemma 3.1, and the additional properties (3.17)
is a matter of straightforward computation making use of the listed properties of R, and
the antisymmetry and partial Lorentz invariance of Q. Note that the minus sign for time-
reversing Lorentz transformations which appears in (3.25) cancels against the complex
conjugation of α�, � ∈ L↓

+, since R(−a) = R(a). ��
Given a deformation map ρ = ρ(R, Q) of the form described above, it is straightfor-

ward to check that a general Poincaré transformation (x,�) ∈ P+ acts on the associated
deformed product according to

αx,�( f ⊗ρ(R,Q) g) = αx,�( f )⊗ρ(R,±�Q�−1) αx,�(g), f, g ∈ S , (3.27)

where the ±-sign is “+” for orthochronous and “−” for non-orthochronous �. This
identity can easily be verified on the basis of (3.19) and (3.22).
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It has been shown in [GL07] that the most general matrix satisfying (3.25) is, in case
the spacetime dimension is d = 4 or d �= 4,

Q =
⎛

⎜
⎝

0 κ 0 0
κ 0 0 0
0 0 0 κ ′
0 0 −κ ′ 0

⎞

⎟
⎠ , Q =

⎛

⎜
⎜
⎜
⎜
⎝

0 κ 0 · · · 0
κ 0 0 · · · 0
0 0 0 · · · 0
...
...
...
. . .

...

0 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎠
, (3.28)

with arbitrary parameters κ, κ ′ ∈ R. For Lorentz transformations � which map the
wedge W0 onto its causal complement W ′

0, one has

�Q�−1 =
{−Q; � ∈ L↑

+ with �W0 = W ′
0

Q; � ∈ L↓
+ with �W0 = W ′

0

. (3.29)

This implies that for fixed R, the opposite deformation is given by inverting the sign
of Q,

α j ( f ⊗ρ(R,Q) g) = α j ( f )⊗ρ(R,−Q) α j (g), f, g ∈ S . (3.30)

We also mention that the deformations ρ(R, Q) naturally lead to one-parameter
families of deformation maps ρ(R, λ · Q), λ ∈ R. In the limit λ → 0, we recover the
undeformed product.

Proposition 3.6. Let R be a deformation function and Q a real (d × d)-matrix. Then,
for all f, g ∈ S ,

lim
λ→0

f ⊗ρ(R,λ·Q) g = f ⊗ g. (3.31)

Proof. As R(0) = 1, the functions rλ(p1, . . . , pn) :=∏l,r R(λ pl · Qpr ) (3.19) appear-
ing in the product ⊗ρ(R,λ·Q) converge pointwise to the constant function 1 as λ → 0.
This limit is also valid in a stronger topology: Making use of the polynomial bounded-
ness of the derivatives of R, it is not difficult to show that for any multi-index µ ∈ N

nd ,
there exists N (µ) ∈ R such that

lim
λ→0

sup
p∈Rnd

|∂µ
p (rλ( p)− 1)|

(1 + ‖ p‖2)N (µ)
= 0.

It then follows by straightforward estimates that ( f ⊗ρ(R,λ·Q) g)n = rλ · ( f ⊗ g)n →
( f ⊗ g)n as λ → 0, in the topology of Sn, n ∈ N. This implies the claimed limit
(3.31). ��

The simplest non-trivial deformation function is R(a) := eia . This example was
studied in [GL08]. For this function, the corresponding deformed product

˜( f ⊗ρ g)n(p1, . . . , pn) =
n∑

k=0

ei(p1+···+pk )·Q(pk+1+···+pn)

× f̃k(p1, . . . , pk) g̃n−k(pk+1, . . . , pn)
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can also be written as

( f ⊗ρ g)n(x1, . . . , xn) = (2π)−d
∫

dq dy e−iq·y (αQq f ⊗ αy g)n(x1, . . . , xn).

It is thus identical to the Rieffel-deformation [Rie92] of the tensor product ⊗ with the
R

d -action α|Rd [GL08]. In particular, it follows that all translationally invariant (not
necessarily quasi-free) states are compatible with this deformation, as proven in [Rie93]
by using the above integral representation of the deformed product. (Note that because of
the antisymmetry of Q, we have e−i(p1+···+pk )·Q(pk+1+···+pn) = 1 for all p ∈ Sn

inv (3.12).)
However, for the deformations given by a general deformation function R, the restric-

tion to quasi-free states is necessary. In fact, assume that the n-point functions ρn defined
in terms of R by (3.26) and (3.18) satisfy (3.11) on Sn

inv (3.12). Taking n = 4 and k = 1
in (3.11), we then have R(p1 · Qp2)R(p1 · Qp3)R(p1 · Qp4) = 1 for all p with
p1 + · · · + p4 = 0. Inserting p4 = −(p1 + p2 + p3) and making use of the antisymmetry
of Q as well as (3.22) yields the condition

R(p1 · Qp2)R(p1 · Qp3) = R(p1 · Qp2 + p1 · Qp3).

Since p1, p2, p3 can be chosen independently, this condition is only satisfied for R(a) =
eica . We will therefore restrict our attention to quasi-free translationally invariant states
ω in the following.

We now consider the question under which conditions a multiplicative deformation
ρ is wedge-local in the GNS representation associated with a quasi-free translation-
ally invariant state ω. As we have been working with the full tensor algebra S instead
of its quotient S /L by the locality ideal L , we have to consider states annihilating
L . Picking such a state ω, we recall from Lemma 2.4 that wedge-locality in the GNS
representation of (S , ω) amounts to

ω((u ⊗ρ f )⊗ (g′ ⊗ρ′ v)) = ω((u ⊗ρ′ g′)⊗ ( f ⊗ρ v)) (3.32)

for all f ∈ S (W0), g′ ∈ α j (S (W0)) = S (W ′
0), and all u, v ∈ S .

To motivate the following steps, it is instructive to recall the known results about the
special case R(a) = eia first. In this context, (3.32) is known to hold for a translation-
ally invariant state ω annihilating L if ω satisfies also the spectrum condition and Q is
admissible in the sense that QV+ ⊂ W0 [BLS10]. This interplay of locality and spectral
properties can be understood as follows. The spectrum condition restricts the supports
of the n-point functions ω̃n to those p ∈ R

nd with p1, p1 + p2, . . . , p1 + · · · + pn ∈ V+
(3.13). This implies that in (3.32), we may restrict to u with supp ũ ⊂ −Sn

inv. For those
u, in the deformed product

˜(u ⊗ρ f )n(p1, . . . , pn) =
n∑

k=0

ei(p1+···+pk )·Q(pk+1+···+pn)

× ũk(p1, . . . , pk) f̃n−k(pk+1, . . . , pn)

=
n∑

k=0

ũk(p1, . . . , pk) α−Q(p1+···+pk )( f )∼n−k(pk+1, . . . , pn)

only translations of f in the directions −Q(p1 + · · ·+ pk) appear, which by admissibility
of Q lie in the right wedge W0. But translations along x ∈ W0 preserve the support of
f ∈ S (W0). Similar arguments can be applied to the other terms in (3.32), showing that
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g′ ∈ S (W ′
0) is effectively translated in the opposite direction, so that also the support

of g′ in W ′
0 = −W0 is preserved. Thus the effect of the deformation consists in shifting

the spacelike supports of f and g′ apart, and the locality condition of ω then allows to
conclude that (3.32) holds [GL08].

As we are working here with a family of deformations containing R(a) = eia , we
will in the following also require that ω satisfies the spectrum condition and Q is admis-
sible. This last condition simply amounts to choosing the parameter κ appearing in Q
(3.28) non-negative.

The multiplicative deformations given by a function R which are not of exponential
form do not simply act as translations on S , and the preceding locality argument for the
case R(a) = eia has to be adapted. Here the half-sided support of the Fourier transform
R̃ (Definition 3.4 iii)) comes into play, which makes it possible to control the effect of
the deformed products ⊗ρ, ⊗ρ′ on the spacetime supports of suitable test functions.

Proposition 3.7. Let R be a deformation function and define, x ∈ R
d ,

τ R
x : S → S ,

˜(τ R
x f )n(p1, . . . , pn) := f̃n(p1, . . . , pn) ·

n∏

k=1

R(x · pk).
(3.33)

i) τ R
x is a continuous automorphism of S for any x ∈ R

d . For x ∈ W0, one has

τ R±x (S (±W0)) ⊂ S (±W0). (3.34)

ii) Let n,m ∈ N0, h± ∈ Sm with supp h̃± ⊂ V±, and f ∈ Sn(W0), g′ ∈ Sn(W ′
0).

Then the deformation map ρ given by R and an admissible matrix Q satisfies

supp(h− ⊗ρ f ) ⊂ R
md × (W0)

×n, (3.35)

supp(h− ⊗ρ′ g′) ⊂ R
md × (W ′

0)
×n, (3.36)

supp(g′ ⊗ρ′ h+) ⊂ (W ′
0)

×n × R
md , (3.37)

supp( f ⊗ρ h+) ⊂ (W0)
×n × R

md . (3.38)

Proof. i) The linearity and continuity of each τ R
x is clear. In momentum space, τ R

x mul-
tiplies by the tensor product function R⊗n

x , Rx (p) := R(x · p). Hence τ R
x is an algebra

homomorphism. It is also invertible, with inverse (τ R
x )

−1 = τ R−x , because R(−a) =
R(a)−1. By definition, τ R

x has the identity of S as a fixed point, and since R(−a) =
R(a), we also have τ R

x ( f )∗ = τ R
x ( f ∗), f ∈ S . This shows that τ R

x is an automorphism
of S . Note that although τ R

0 = id and (τ R
x )

−1 = τ R−x , the group law τ R
x τ

R
y = τ R

x+y
holds only if R is of exponential form.

To check the claims about the supports in wedges, let f ∈ S (W0), i.e., supp fn ⊂
W ×n

0 for all n ∈ N. The function R⊗n
x defines a tempered distribution, and therefore

has a Fourier transform R̃⊗n
x in S ′

n such that τ R
x ( fn) = (2π)−nd/2 R̃⊗n

x ∗ fn . Explicitly,
y, z, p ∈ R

nd ,
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(τ R
x f )n( y) = (2π)−nd/2

∫

d z fn( y − z)
∫

d p
n∏

k=1

(
e−i pk ·zk R(x · pk)

)

= (2π)−nd/2
∫

d z fn( y − z)
∫

d p

×
n∏

k=1

(

e−i pk ·zk (2π)−1/2
∫

dλk eiλk (x ·pk ) R̃(λk)

)

= (2π)+n(d−1)/2
∫

dλ1 · · · dλn R̃(λ1) · · · R̃(λn)

∫

d z fn( y − z)

×
n∏

k=1

δ(zk − λk x)

= (2π)+n(d−1)/2
∫

dλ1 · · · dλn R̃(λ1) · · · R̃(λn) fn(y1 − λ1x, . . . , yn −λn x).

The wedge W0 has the two geometric propertiesλW0 ⊂ W0 forλ ≥ 0 and W0+W0 ⊂ W0.
Since supp R̃ ⊂ R+, all λk appearing in this integral are positive, and since x ∈ W0, we
have λ1x, . . . , λn x ∈ W0. Taking into account that the support of fn lies in W ×n

0 , we

find supp (τ R
x f )n ⊂ supp fn + W0

×n ⊂ W ×n
0 + W0

×n ⊂ W ×n
0 , and hence τ R

x S (W0) ⊂
S (W0). The arguments leading to τ R−x (S (−W0)) ⊂ S (−W0) are completely analo-
gous.

ii) The deformed product h− ⊗ρ f can be expressed with the shift automorphisms
τ R

x (3.33) as, k ∈ R
md , p ∈ R

nd ,

(h− ⊗ρ f )∼(k, p) = h̃−(k)
m∏

l=1

n∏

r=1

R(kl · Qpr ) · f̃ ( p)

= h̃−(k)
(
τ R−Qk1

· · · τ R−Qkm
f
)∼
( p).

As supp h̃− ⊂ V− and Q is admissible, the vectors −Qk1, …, −Qkn all lie in W0,
and by part i), we have τ R−Qk1

· · · τ R−Qkm
f ∈ Sn(W0). Hence h− ⊗ρ f has support in

R
md × W ×n

0 .
In comparison, in (g′ ⊗ρ′ h+), the support of g′ lies in −W0 instead of W0, and ρ is

replaced by ρ′. But the opposite deformation is given by the same deformation function
R, and matrix −Q instead of Q. Hence we can repeat the above argument with shifts
+Qk1, . . . ,+Qkm ∈ −W0, preserving the support of g′ in −W0, i.e. supp (g′ ⊗ρ′ h+) ⊂
(W ′

0)
×n × R

md .
The third and fourth function can be rewritten as

(g′ ⊗ρ′ h+) = ((h+)∗ ⊗ρ′ (g′)∗)∗, ( f ⊗ρ h+) = ((h+)∗ ⊗ρ f ∗)∗.

As the ∗-involution preserves supports in spacetime, but reflects supports in momentum
space about the origin, we have supp (h̃+)∗ ⊂ V−, supp (g′)∗ ⊂ (−W0), supp f ∗ ⊂ W0,
as in the first two functions h− ⊗ρ f, h− ⊗ρ′ g′. Taking also into account (Sm ⊗
Sn(±W0))

∗ = Sn(±W0) ⊗ Sm , the claim about the supports of (g′ ⊗ρ′ h+) and
( f ⊗ρ h+) follows. ��
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As a preparation for the wedge-locality proof, we recall two facts about quasi-free
states satisfying the spectrum condition respectively states vanishing on the locality
ideal.

Lemma 3.8. Let ω be a quasi-free translationally invariant state on S which satisfies
the spectrum condition, and consider some f ∈ S and the vector 
ω( f ) representing
f in the GNS representation space of (S , ω). If

ω(h− ⊗ f ) = 0 for all h− ∈ S with supp h̃− ⊂ V−,

then 
ω( f ) = 0.

Proof. By the GNS construction, we have ω(h− ⊗ f ) = 〈
ω((h−)∗), 
ω( f )〉, where
the momentum space support of (h−)∗ is supp (h̃−)∗ ⊂ V +. We thus have to show that
the space D+ ⊂ Hω of all
ω(h+), where supp h̃+ ⊂ V+, is dense. This is a consequence
of ω being quasi-free and satisfying the spectrum condition. In fact, in this situation, ω2
has the form (3.16) with a measurew on V+, and the GNS representation space Hω is the
Bose Fock space over the single particle space L2(V+, w(p)dp). For functions h+

n ∈ Sn
whose support in momentum space does not intersect the backward lightcone, 
ω(h+

n)

is a vector in the n-particle space L2(V+, w(p)dp)⊗symn , given by symmetrization in all
variables of the Fourier transform h̃+

n . The n-particle vectors obtained in this manner
form a dense subspace of the n-particle space. Since we can take arbitrary n, the density
of D+ follows. ��
Lemma 3.9. Let F ∈ Sn+m, G ∈ Sn′+m′ , n,m, n′,m′ ∈ N0, such that supp F ⊂
R

md × (W0)
×n and supp G ⊂ (W ′

0)
×n′ × R

m′d . Let τ : Sm+n+n′+m′ → Sm+n+n′+m′
denote the flip

(τH)( y, x, x′, y′) := H( y, x′, x, y′), y ∈ R
md , x ∈ R

nd , x′ ∈ R
n′d , y′ ∈ R

m′d .
(3.39)

Then for each state ω on S which annihilates the locality ideal, we have

ω(F ⊗ G) = ω(τ(F ⊗ G)). (3.40)

Proof. In view of the support properties of F and G, we can represent these functions
as F =∑∞

t=1 l(t)⊗ r (t), G =∑∞
t=1 a(t)⊗ b(t), with l(t) ∈ Sm, r (t) ∈ Sn(W0), a(t) ∈

Sn′(W ′
0), b(t) ∈ Sm′ , and these series converge in the topology of S . Because the

supports of the r (t) and a(t) are spacelike separated and ω annihilates the locality ideal,
we have

T∑

t=1

S∑

s=1

ω(l(t) ⊗ r (t) ⊗ a(s) ⊗ b(s)) =
T∑

t=1

S∑

s=1

ω(l(t) ⊗ a(s) ⊗ r (t) ⊗ b(s))

= ω(τ(

T∑

t=1

S∑

s=1

l(t) ⊗ r (t) ⊗ a(s) ⊗ b(s))).

Making use of the continuity of τ and ω, the equality (3.40) follows from the above
calculation in the limit T → ∞, S → ∞. ��
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Theorem 3.10. Let R be a deformation function, and let Q be an admissible matrix.
Then the deformation ρ given by R and Q via (3.26) and (3.18) is wedge-local in any
quasi-free translationally invariant state ω which satisfies the spectrum condition and
vanishes on the locality ideal.

Proof. Let n, n′ ∈ N0, and f ∈ Sn(W0), g′ ∈ Sn′(W ′
0). We have to show that φρω( f )

and φρ
′
ω (g′) commute on the Wightman domain φω(S )	ω in the GNS space Hω. In

view of Lemma 2.4, this is equivalent to showing that for arbitrary h+ ∈ Sm, h− ∈
Sm′ , m,m′ ∈ N0, one of the following equivalent equations holds:

ω(h− ⊗ ( f ⊗ρ (g
′ ⊗ρ′ h+))) = ω(h− ⊗ (g′ ⊗ρ′ ( f ⊗ρ h+))),

⇐⇒ ω((h− ⊗ρ f )⊗ (g′ ⊗ρ′ h+)) = ω((h− ⊗ρ′ g′)⊗ ( f ⊗ρ h+)), (3.41)

⇐⇒ ω(((h− ⊗ρ f )⊗ρ′ g′)⊗ h+) = ω(((h− ⊗ρ′ g′)⊗ρ f )⊗ h+),

⇐⇒ω((h+)∗ ⊗ ((g′)∗ ⊗ρ′ ( f ∗ ⊗ρ (h
−)∗))) =ω((h+)∗ ⊗ ( f ∗ ⊗ρ ((g

′)∗ ⊗ρ′ (h−)∗))).

Considering the first equation, we note that by Lemma 3.8, it is sufficient to consider h−
with supp h̃− ⊂ V−. Considering the last equation, we can apply Lemma 3.8 again, and
see that we may restrict to h+ with supp (h̃+)∗ ⊂ V−, or, equivalently, supp h̃+ ⊂ V+.

So let h± have the specified momentum space supports, and consider the equation
in question in the form (3.41). In view of the support properties of f, g′, we can apply
Proposition 3.7. Introducing the abbreviations F− := h−⊗ρ f, F+ := f ⊗ρ h+, G− :=
h− ⊗ρ′ g′, G+ := g′ ⊗ρ′ h+, we have

supp F− ⊂ R
md × (W0)

×n, supp G+ ⊂ (W ′
0)

×n′ × R
m′d ,

supp G− ⊂ R
md × (W ′

0)
×n′
, supp F+ ⊂ (W0)

×n × R
md .

Application of Lemma 3.9 now yields ω(F− ⊗ G+) = ω(τ(F− ⊗ G+)) with the flip
τ (3.39). Note that τ also acts in momentum space by interchanging the two middle
variables.

To complete the proof, we now show that ω(τ(F− ⊗ G+)) = ω(G− ⊗ F+) by
exploiting the compatibility of ω with ρ, ρ′ in the form expressed in (3.20). We can
thus multiply (G− ⊗ F+)∼ with various factors of R(±p · Qq) without changing its
expectation value in ω. Explicitly, k ∈ R

m, p ∈ R
n, p′ ∈ R

n′
, k′ ∈ R

m′
,

(G− ⊗ F+)∼(k, p′, p, k′) = h̃−(k)g̃′( p′) f̃ ( p)h̃+(k′)
m∏

l=1

n′
∏

r=1

R(−kl · Qp′
r )

×
n∏

l=1

m′
∏

r=1

R(pl · Qk′
r ),

and we choose once k = m and two point function ρ2(p, q) = R(−p · Qq) in (3.20),
and once k = m + n + n′ and ρ2(p, q) = R(p · Qq). Multiplying (G− ⊗ F+)∼ by these
products results in a function C , which takes the form
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C̃(k, p′, p, k′) := (G− ⊗ F+)∼(k, p′, p, k′)

·
m∏

l=1

⎧
⎨

⎩

n′
∏

r=1

R(kl Qp′
r ) ·

n∏

r=1

R(kl Qpr ) ·
m′
∏

r=1

R(kl Qk′
r )

⎫
⎬

⎭

×
m′
∏

r=1

⎧
⎨

⎩

m∏

l=1

R(−kl Qk′
r ) ·

n′
∏

l=1

R(−p′
l Qk′

r ) ·
n∏

l=1

R(−pl Qk′
r )

⎫
⎬

⎭

= h̃−(k) f̃ ( p)g̃′( p′)h̃+(k′) ·
m∏

l=1

n∏

r=1

R(kl Qpr ) ·
n′
∏

l=1

m′
∏

r=1

R(−p′
l Qk′

r )

= ((h− ⊗ρ f )⊗ (g′ ⊗ρ′ h+))∼(k, p, p′, k′)
= (F− ⊗ G+)∼(k, p, p′, k′),

that is, C = τ(F− ⊗ G+). By construction of C , we have ω(C) = ω(G− ⊗ F+). Thus
we arrive at

ω(F− ⊗ G+) = ω(τ(F− ⊗ G+)) = ω(C) = ω(G− ⊗ F+),

establishing (3.41). ��

4. Fock Space Representations

As shown in the previous section, there exists a large class of multiplicative deformations
on S which are compatible with all quasi-free Wightman states, and therefore give rise
to wedge-local deformations of generalized free field theories. In this section, we will
for simplicity consider the explicit two point function

ω̃2(p, q) = δ(p + q) ε−1
p δ(p0 − ε p), ε p =

√

p2 + m2, p = (p0, p) ∈ R
d ,

with some fixed mass m > 0, and discuss multiplicative deformations in the correspond-
ing GNS representation. We will use the notation from Sect. 2, but generally drop the
index ω on φω( f ),
ω( f ),Dω,Hω,	ω,Uω, since we are working with a fixed state
here.

Recall that without deformation, the GNS representation (φ,H,	) of (S , ω)

describes the model theory of a free scalar field of mass m. The representation space H
is the Bose Fock space over the single particle space H1 := L2(Rd , dμ) with measure
dμ(p) = ε−1

p δ(p0 − ε p)dp, and the implementing vector 	 is the Fock vacuum.
As a consequence of the Poincaré invariance properties of ω, there exists an (anti-)

unitary representation U of P+ on H, which leaves 	 invariant, satisfies the spectrum
condition, and acts according to U (x,�)
( f ) = 
(αx,� f ), f ∈ S . Explicitly, we
have, 
 ∈ H,

(U (x,�)
)n(p1, . . . , pn) = ei(p1+···+pn)·x 
n(�
−1 p1, . . . , �

−1 pn), (4.1)

(U (0, j)
)n(p1, . . . , pn) = 
n(− j p1, . . . ,− j pn). (4.2)

In the following, we will consider a fixed multiplicative deformation ρ ∈ R0, given
by a deformation function R and an admissible matrix Q. To keep track of both these
objects, we will denote the fields representing (S ,⊗ρ) as φR,Q( f ) instead of φρ( f ).
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Proposition 4.1. Let R be a deformation function, Q an admissible matrix, and f, g ∈
S , 
 ∈ D.

i) φR,Q( f ) is a closable operator containing D in its domain for any f ∈ S , and
the map S � f �→ φR,Q( f )
 ∈ H is linear and continuous for any 
 ∈ D.

ii) For f, g ∈ S ,

φR,Q( f )
(g) = 
( f ⊗ρ(R,Q) g), (4.3)

φR,Q( f )φR,Q(g) = φR,Q( f ⊗ρ(R,Q) g), (4.4)

φR,Q( f )∗ ⊃ φR,Q( f ∗), (4.5)

φR,Q( f )	 = φ( f )	. (4.6)

iii) Covariance: For (x,�) ∈ P↑
+ , we have

U (x,�)φR,Q( f )U (x,�)−1 = φR,�Q�−1(αx,� f ), (4.7)

and the reflection at the edge of W0 acts according to

U (0, j)φR,Q( f )U (0, j) = φR,−Q(α j f ). (4.8)

iv) Wedge-Locality: Let f ∈ S (W0 + a), g ∈ S (W ′
0 + a) for some a ∈ R

d . Then

[φR,Q( f ), φR,−Q(g)]
 = 0. (4.9)

v) Reeh-Schlieder property: For any open set O ⊂ R
d , the subspace

DR,Q(O) := φR,Q(S (O))	 (4.10)

is dense in H.
vi) φR,Q is a weak solution of the Klein-Gordon equation: For f1 ∈ C∞

0 (R
d),

φR,Q((� + m2) f1) = 0. (4.11)

Proof. The statements in ii) follow directly from Proposition 2.3 because ρ is com-
patible with ω, and φR,Q is a ∗-representation of (S ,⊗ρ). i) Clearly, each φR,Q( f )
is defined on the dense domain D, and in view of (4.5) closable. For g ∈ S , the
map f �→ φR,Q( f )
(g) = 
(ρ−1(ρ( f ) ⊗ ρ(g))) is linear and continuous because
ρ, ρ−1 : S → S and 
 : S → H are linear and continuous.

The covariance statements in iii) follow from U (x,�)
( f ) = 
(αx,� f ), U (0, j)

( f ) = 
(α j f ) and (3.27). iv) In view of the translation covariance iii), it is sufficient to
show (4.9) for a = 0. But this is just a reformulation of Theorem 3.10. The Reeh-Schlie-
der property v) is known to hold for the undeformed fields, corresponding to Q = 0.
But in view of (4.6), DR,Q(O) ⊃ D0(O), and the density of DR,Q(O) follows.

The undeformed fieldφ is known to be a weak solution of the Klein-Gordon equation.
Using (4.6) again, we therefore have φR,Q((� + m2) f ∗

1 )	 = φ((� + m2) f ∗
1 )	 = 0.

Now, since f1 has compact support, we find a ∈ R
d such that W ′

0 + a lies spacelike to
supp f1 = supp f ∗

1 . For g ∈ S (W ′
0 + a), we have in view of (4.6) and iv),

φR,Q((� + m2) f1)
∗φR,−Q(g)	 = φR,−Q(g)φR,Q((� + m2) f ∗

1 )	 = 0.

Thus, for any 
 ∈ dom φR,Q((� + m2) f1) and any 
 ′ ∈ DR,−Q(W ′
0 + a),

〈
 ′, φR,Q((� + m2) f1)
〉 = 〈φR,Q((� + m2) f1)
∗
 ′, 
〉 = 0.
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As DR,−Q(W ′
0+a) is a dense subspace of H by v), it follows thatφR,Q((�+m2) f1)
 = 0

for any 
 ∈ dom φR,Q((� + m2) f1), and this operator extends to the zero operator on
all of H. ��

As explained in Sect. 2, we have now constructed a wedge-local quantum field theory,
given by the ∗-algebra PR generated by all φR,Q( f ), f ∈ S (W0), and

PR(�W0 + x) := U (x,�)PRU (x,�)−1, (x,�) ∈ P+. (4.12)

In view of the transformation property (4.7), the algebra PR(�W0 + x) is generated
by the field operators φR,±�Q�−1( f ), f ∈ S (�W0 + x), where the sign "±" refers to
orthochronous / anti-orthochronous Lorentz transformations. In particular, PR(W ′

0) is
generated by all φR,−Q( f ), f ∈ S (W ′

0). Thus the orbit Q := {�Q�−1 : � ∈ L+}
provides a coordinatization for the different directions of the wedges [GL07,BLS10],
whereas the deformation function R labels the kind of deformation used.

Before we proceed to studying the observable consequences of the deformation, we
point out that with Q, also the rescaled matrices λ · Q, λ ≥ 0, are admissible. We
have thus constructed one-parameter families PR,λ of wedge algebras, representing the
deformation maps ρ(R, λ · Q). Taking the limit λ → 0 reproduces the undeformed field
operators.

Proposition 4.2. Let R be a deformation function and Q an admissible matrix. Then,
for any f ∈ S , 
 ∈ D,

lim
λ→0

φR,λ·Q( f )
 = φ( f )
. (4.13)

Proof. Since any 
 ∈ D is of the form 
 = 
(g), g ∈ S , we have φR,λ·Q
 =

( f ⊗ρ(R,λ·Q) g). The claim now follows from the continuity of 
 : S → H and
Proposition 3.6. ��

We now want to compute the deformed field operators φR,Q( f ) more explicitly in
terms of twisted creation and annihilation operators. To this end, we have to introduce
some more notation. For f1 ∈ S1, we denote by f ±

1 (p) := f̃1(±p), p ∈ H+
m , the

restriction of the Fourier transform of f1 to the upper and lower mass shell H±
m . With

this notation, 
( f1) = f +
1 ∈ H1, and the undeformed field operator has the familiar

form

φ( f1) = a†(
( f1)) + a(
( f ∗
1 )) = a†( f +

1 ) + a( f −
1 ), f1 ∈ S1. (4.14)

Here a, a† form the standard representation of the canonical commutation relations on
H. For 
 ∈ D, ϕ, ψ ∈ H1,

(a(ϕ)
)n(p1, . . . , pn) := √
n + 1

∫

dμ(q) ϕ(q)
n+1(q, p1, . . . , pn), (4.15)

a†(ϕ) := a(ϕ)∗, (4.16)

[a(ϕ), a(ψ)] = 0,
[
a†(ϕ), a†(ψ)

]
= 0,

[
a(ϕ), a†(ψ)

]

 = 〈ϕ,ψ〉 ·
. (4.17)
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We will also work with the distributional kernels a#(p) of these operators, related to
a#(ϕ) by a†(ϕ) = ∫ dμ(p) ϕ(p)a†(p) and a(ϕ) = ∫ dμ(p) ϕ(p)a(p), with the com-
mutation relations,

[a(p), a(q)] = 0, [a†(p), a†(q)] = 0, [a(p), a†(q)] = ε p δ(p − q) · 1.
(4.18)

To define deformed versions of these creation/annihilation operators, we introduce
the operator-valued function

TR : R
d → B(H), (4.19)

(TR(x)
)n(p1, . . . , pn) :=
n∏

k=1

R(x · pk)
n(p1, . . . , pn). (4.20)

It is not difficult to see that quasi-free translationally invariant states are invariant under
the shift automorphisms τ R

x (3.33), and the operators TR(x) defined above implement
these automorphisms on the GNS space. We will however not need these facts here, and
only point out that because of the properties (3.22) of R, the operator TR(x) is unitary
for any x ∈ R

d , and

TR(x)
∗ = TR(−x) = TR(x)

−1, TR(0) = 1. (4.21)

The operators TR(x) are now used to twist the canonical commutation relations. We
define the operator-valued distributions

aR,Q(p) := a(p)TR(Qp), a†
R,Q(p) = a†(p) TR(−Qp). (4.22)

Making use of the antisymmetry of Q and R(0) = 1, it is straightforward to check that
a(p) and TR(Qp) commute, and thus a†

R,Q(p) = aR,Q(p)∗. Explicitly, the deformed
annihilation operator acts a, ϕ ∈ H1, 
 ∈ D,

(aR,Q(ϕ)
)n(p1, . . . , pn) = √
n + 1

∫

dμ(q) ϕ(q)
n∏

k=1

R(Qq · pk)

×
n+1(q, p1, . . . , pn), (4.23)

and a†
R,Q(ϕ) = aR,Q(ϕ)

∗. It is instructive to compute the exchange relations of the
kernels (4.22) for different matrices Q, Q′. By straightforward calculation, one gets
a(p)TR(x) = R(x · p) · TR(x)a(p), and hence

aR,Q(p)aR,Q′(p′) = R(p · Qp′)R(p · Q′ p′) aR,Q′(p′)aR,Q(p),

a†
R,Q(p)a

†
R,Q′(p′) = R(p · Qp′)R(p · Q′ p′) a†

R,Q′(p′)a†
R,Q(p),

aR,Q(p)a
†
R,Q′(p′) = R(−p · Qp′)R(−p · Q′ p′) a†

R,Q′(p′)aR,Q(p)

+ ε p δ( p − p′)TR(Qp)TR(−Q′ p).

(4.24)

This exchange algebra generalizes the relations of the Moyal-twisted CCR from [GL07].
Putting Q′ = Q, these commutation relations are reminiscent of the Zamolodchikov-
Faddeev algebra [ZZ79,Fad84], an observation that will be discussed in Sect. 6. We also
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note that for Q′ = −Q, one can use R(−a) = R(a)−1 to simplify the above commuta-
tors to

[aR,Q(p), aR,−Q(p
′)] = 0,

[a†
R,Q(p), a†

R,−Q(p
′)] = 0,

[aR,Q(p), a†
R,−Q(p

′)] = ε p δ( p − p′)TR(Qp)2.

As −Q corresponds to the reflected wedge W ′
0, these exchange relations and the analytic

properties of R can also be used for a proof of the wedge-locality in Proposition 4.1 iv)
along the same lines as in [Lec03].

Proposition 4.3. The deformed field operators φR,Q( f1), f1 ∈ S1, have the form

φR,Q( f1) = a†
R,Q( f +

1 ) + aR,Q( f −
1 ). (4.25)

Proof. Let f1 ∈ S1 with supp f̃1 ⊂ V−, and g ∈ Sn+1(V+), n ∈ N0. Then

(g) ∈ Hn+1, 
( f1 ⊗ρ g) ∈ Hn , and for p1, . . . , pn ∈ H+

m , we find, dμ( p) :=
dμ(p1) · · · dμ(pn+2),

φQ,R( f1)
(g) = 
( f1 ⊗R,Q g)

=
∫

dμ( p) ( f1 ⊗R,Q g)∼(−p1, p2, . . . , pn+2)

× a(p1)a
†(p2) · · · a†(pn+2)	

=
∫

dμ( p) f̃1(−p1)g̃(p2, .., pn+2)

n+2∏

r=2

R(−p1 · Qpr )a(p1)

× a†(p2) · · · a†(pn+2)	

=
∫

dμ( p) f̃1(−p1)g̃(p2, .., pn+2)a(p1)TR(Qp1)a
†(p2) · · · a†(pn+2)	

= aR,Q( f −
1 )
(g).

As g and n were arbitrary, we have shown that φR,Q( f1) and aR,Q( f −
1 ) coincide on

D. Since supp f1 does not intersect the upper mass shell, f +
1 = 0, and hence the above

equation confirms (4.25). Taking adjoints, one also finds, 
 ∈ D,

φR,Q( f ∗
1 )
 = φR,Q( f1)

∗
 = aR,Q(( f ∗
1 )

−)∗
 = a†
R,Q(( f ∗

1 )
+)
.

As supp f̃ ∗
1 = −supp f̃1 ⊂ V+, this implies φR,Q( f1)
 = a†

R,Q( f +
1 )
 for all 
 ∈ D

and all f1 ∈ S1 with supp f̃ ⊂ V+. A function f1 ∈ S1 with arbitrary momentum
space support can be decomposed according to f1 = g1 + h1 with the support of g̃1

(respectively h̃1) not intersecting the upper (respectively lower) mass shell. By linearity,
this gives (4.25). ��

It is interesting to note that the deformed field operators can also be expressed as inte-
grals over undeformed fields, similar to the warped convolutions studied in [BLS10].
More precisely, one has, f1 ∈ S1,

φR,Q( f1) = (2π)−d
∫

dp dx e−i p·x U (x, 1)φ( f1)U (−x, 1)TR(−Qp). (4.26)
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This integral exists as a weak oscillatory integral on vectors
 ∈ D. In fact, for supp f1 ⊂
V− and 
 ∈ H, we obtain, n ∈ N0, q1, . . . , qn ∈ H+

m ,

(2π)−d
∫

dp dx e−i p·x (U (x, 1)φ( f1)U (−x, 1)TR(−Qp)
)n(q1, . . . , qn)

= √
n + 1(2π)−d

∫

dp dx e−i p·x
∫

dμ(q0) f̃1(−q0)e
−iq0·x

×(TR(−Qp)
)n+1(q0, q1, . . . , qn)

= √
n + 1

∫

dμ(q0) f̃1(−q0)(TR(Qq0)
)n+1(q0, q1, . . . , qn)

= √
n + 1

∫

dμ(q0) f̃1(−q0)

n∏

r=1

R(Qq0 · qr )
n+1(q0, q1, . . . , qn)

= (aR,Q( f −
1 )
)n(q1, . . . , qn),

and an analogous calculation can be carried out for the creation operator, establish-
ing (4.26). However, the integral formula (4.26) reproduces the higher deformed fields
φR,Q( fn), n ≥ 2, only if R is of the exponential form R(a) = eica . In this case,
TR(x) = U (x, 1), and (4.26) coincides with the warped convolution of φ( f ) by the
translation representation U |Rd [BLS10]. But for generic R, the integrals (4.26) are
non-local operators,2 and the deformation map φ( fn) �→ φR,Q( fn) takes a different
form. The extension of this map to bounded operators and its integral representations
will be discussed in a forthcoming publication with J. Schlemmer.

We now show that the deformation φ( f ) �→ φR,Q( f ) produces in fact new models,
which are not equivalent to their undeformed counterparts. To this end, we will compute
the two-particle scattering of the deformed models defined by the fields φR,Q , following
the Haag-Ruelle-Hepp approach [Ara99,Hep65] in its form adapted to wedge-localized
operators [BBS01]. Picking f1, g1 ∈ S1, the fields φR,Q( f1), φR,−Q(g1) are localized
in the wedges W0 + supp f1 and W ′

0 + supp g1, respectively, and create single particle
states from the vacuum:3

φR,±Q( f1)	 = φ( f1)	 = f +
1 ∈ H1. (4.27)

To define two-particle scattering states, we choose f1, g1 in such a way that supp f̃1,

supp g̃1 are concentrated around points on the upper mass shell, and do not intersect the
lower mass shell. Furthermore, we introduce the usual notations
�( f1) := {(1, p/ε p) : p ∈ supp f̃1} for the velocity support of f1, and f1,t (x) :=
(2π)−d/2

∫
dp f̃ (p)ei(p0−ε p)t e−i p·x , with p = (p0, p) and ε p = ( p2 + m2)1/2, for its

Klein-Gordon time evolution. It is well known that for asymptotic times t , the support
of f1,t is essentially contained in t�( f1) [Hep65], that is, the restriction of f1,t to the
complement of an open neighborhood of t�( f1) converges to zero in the topology of
S1 as |t | → ∞.

Because of the compact supports of f1, g1 in momentum space, the fields φR,Q( f1)

and φR,−Q(g1) are not sharply localized in Minkowski space. However, for asymptotic
times we have localization of φR,Q( f1,t ) andφR,−Q(g1) in W0 +t�( f1) and W ′

0 +t�(g1),
respectively. If the velocity supports of f1, g1 lie in a suitable relative position to the

2 I acknowledge helpful discussions with Sergio Yuhjtman about this question.
3 In fact, these fields are temperate polarization-free generators in the sense of [BBS01].
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wedge W0, namely �( f1) − �(g1) ⊂ W0, these regions are spacelike for t > 0. As
t → ∞, we therefore find two-particle outgoing scattering states as the limits [BBS01]

lim
t→∞φR,−Q(g1,t )φR,Q( f1,t )	 = lim

t→∞φR,Q( f1,t )φR−Q(g1,t )	 =: f +
1 ×R

out g+
1 .

(4.28)

To construct scattering states of incoming particles, the ordering of f1, g1 has to be
reversed: For t < 0, the localization regions W0 + t�(g1) and W ′

0 + t�( f1) lie spacelike
if �( f1)− �(g1) ⊂ W0, and we have

lim
t→−∞φR,−Q( f1,t )φR,Q(g1,t )	 = lim

t→−∞φR,Q(g1,t )φR,−Q( f1,t )	 =: f +
1 ×R

in g+
1 .

(4.29)

All these limits are easy to compute in the present setting. Since the supports of f1, g1 do
not intersect the lower mass shell, the annihilation parts of the fields drop out, and because
the t-dependence of f1,t is trivial on the upper mass shell, one finds,�( f1)−�(g1) ⊂ W0,

f +
1 ×R

out g+
1 = lim

t→∞φR,Q( f1,t )φR,−Q(g1,t )	 = a†
R,Q( f +

1 )a
†(g+

1 )	,

f +
1 ×R

in g+
1 = lim

t→−∞φR,−Q( f1,t )φR,Q(g1,t )	 = a†
R,−Q( f +

1 )a
†(g+

1 )	.

These two-particle vectors have the explicit form

( f +
1 ×R

out/in g+
1 )(p1, p2) =

(
a†

R,±Q( f +
1 )g

+
1

)

2
(p1, p2)

= 1√
2

(
R(±p1 · Qp2) f +

1 (p1)g
+
1 (p2)

+ R(±p2 · Qp1) f +
1 (p2)g

+
1 (p1)

)
.

To compute S-matrix elements, let f1, g1, h1, k1 ∈ S1 with �( f1) − �(g1) ⊂
W0, �(h1)− �(k1) ⊂ W0. Taking into account these momentum space supports yields
the scalar products

〈 f +
1 ×R

out g+
1 , h+

1 ×R
in k+

1 〉 =
∫

dμ(p1) dμ(p2) R(−p1 · Qp2)
2

× f̃1(p1)g̃1(p2)h̃1(p1)̃k1(p2). (4.30)

This formula shows that the S-Matrix elements of the discussed model depends on the
deformation. In particular, the scattering in the undeformed theory, corresponding to
R(a) = 1, and the deformed one is different, and the deformed theory is not equivalent
to the undeformed one (see Proposition 5.4).

Equation (4.30) also clarifies the role of the function R on which our deformation is
based: The elastic two-particle S-Matrix kernels of the undeformed and deformed theory
differ by its square R(−p1 · Qp2)

2. Since R is a phase factor, the effects in collision
processes are relatively small, and can only be measured in special setups such as time
delay experiments. These features are similar to the properties of the S-matrices found
in the warped convolution deformation [GL08,BS08].

In view of the dependence of the S-matrix on Q, which is only invariant under the
boosts preserving W0, but not the full Lorentz group in d > 1 + 1 dimensions, we also
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observe that the two-particle S-matrix obtained here is not fully Lorentz invariant in
d > 1 + 1. As a consequence, it follows that the model theory constructed here can
not contain many observables localized in bounded spacetime regions O . When pass-
ing to von Neumann algebras of observables localized in O , one finds that at least the
Reeh-Schlieder property is violated (see Proposition 5.4).

In d = 1 + 1 dimensions, however, the identity component of the Lorentz group
consists just of the one-dimensional boost group, and hence the above S-matrix is fully
Lorentz invariant in this case. We will discuss the two-dimensional situation in Sect. 6.

5. Nets of von Neumann Algebras and Modular Structure

In this section we explain how to pass from the unbounded field operators φR,Q( f ), f ∈
S , to associated von Neumann algebras, and study their modular structure. The first
step is to control commutators of bounded functions of fields.

Proposition 5.1. Let R be a deformation function, and Q an admissible matrix.

i) Let f1 = f ∗
1 ∈ S1. Then φR,Q( f ) is essentially self-adjoint.

ii) Let f1 = f ∗
1 ∈ S1(W0) and g1 = g∗

1 ∈ S1(W ′
0). Then the self-adjoint closures

φR,Q( f1) and φR,−Q(g1) commute, i.e.,
[
eitφR,Q( f1), eisφR,−Q (g1)

]
= 0, t, s ∈ R. (5.1)

Proof. i) We will first show that any 
 ∈ D is an entire analytic vector for the field
operators φR,Q( f1), f1 ∈ S1. For ϕ ∈ H1, the annihilation operator aR,Q(ϕ) can
be estimated with the help of (4.23) and |R(t)| = 1 as

∣
∣(aR,Q(ϕ)
n)(p1, . . . , pn−1)

∣
∣

≤ √
n

∣
∣
∣
∣
∣

∫

dμ(q) ϕ(q)
n∏

k=1

R(Qq · pk)
n(q, p1, . . . , pn−1)

∣
∣
∣
∣
∣

≤ √
n
∫

dμ(q) |ϕ(q)| |
n(q, p1, . . . , pn−1)|.

By standard L2-estimates, this implies ‖aR,Q(ϕ)|Hn ‖ ≤ √
n‖ϕ‖, and taking ad-

joints, also ‖a†
R,Q(ϕ)|Hn ‖ ≤ √

n + 1‖ϕ‖ follows. Thus we have the basic bound

‖φR,Q( f1)|Hn ‖ ≤ √
n + 1 (‖ f +

1 ‖H1 + ‖ f −
1 ‖H1). (5.2)

With this bound one can easily show that any 
 ∈ D is an entire analytic vector
for φR,Q( f1) (see, for example, the proof of Theorem X.41 in [RS75]). As D ⊂ H
is dense, application of Nelson’s analytic vector theorem [RS75, Thm. X.39] shows
that φR,Q( f1), f ∗

1 = f1, is essentially self-adjoint. Its self-adjoint closure will be
denoted φR,Q( f1).

ii) Using the bound (5.2) again, one also shows that eisφR,−Q (g1)
, g1 = g∗
1 ∈ S1, s ∈

R, 
 ∈ D, is an entire analytic vector for φR,Q( f1), as in free field theory. Hence
on 
 ∈ D, the commutator (5.1) can be computed as the power series

[
eitφR,Q( f1), eisφR,−Q(g1)

]

 =

∞∑

n,n′=0

in+n′
tnsn′

n!n′!
[
φR,Q( f1)

n, φR,−Q(g1)
n′]

.
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As φR,Q( f1) and φR,−Q(g1) commute on φ(S )	 (Proposition 4.1 iv), the proof is
finished. ��
We now introduce the von Neumann algebras generated by the self-adjoint field

operators,

MR,Q :=
{

eiφR,Q( f1) : f1 = f ∗
1 ∈ S1(W0)

}′′
,

M̂R,Q :=
{

eiφR,−Q(g1) : g1 = g∗
1 ∈ S1(W

′
0)
}′′
.

In view of Proposition 5.1 ii), these algebras commute, M̂R,Q ⊂ MR,Q
′. By standard

arguments making use of the Reeh-Schlieder property established in Proposition 4.1 v),
it also follows that the vacuum vector is cyclic for MR,Q and M̂R,Q . As these algebras
commute, 	 is separating as well. Thus Tomita Takesaki modular theory applies to the
pair (MR,Q,	), and provides us with modular unitaries�i t

R,Q and a modular involution
JR,Q . In the following theorem, we show that these data are stable under the deforma-
tion, i.e. do not depend on R and Q within the specified limitations. For the special case
R(a) = eia , this fact was already shown in [BLS10].

Theorem 5.2. Let R be a deformation function and Q an admissible matrix.

i) The modular data JR,Q,�R,Q of MR,Q,	 are independent of R and Q.
ii) The Bisognano-Wichmann property holds,

�i t
R,Q = U (0,�1(2π t)), JR,Q = U (0, j), (5.3)

with�1(t) : (x0, . . . , xd−1) �→ (cosh(t)x0 + sinh(t)x1, sinh(t)x0 + cosh(t)x1, x2,

. . . , xd−1) denoting the boosts in x1-direction.
iii) M̂R,Q = MR,Q

′.

Proof. We first show that given f ∈ S (W0), the closed operator F := φR,Q( f ) is
affiliated with MR,Q . To this end, let 
 ∈ dom F, 
0 ∈ D, and consider a real test
function g′

1 ∈ S1(W ′
0). As F∗ changes the particle number only by a finite amount, both


0 and F∗
0 are entire analytic vectors for G ′ := φR,−Q(g′
1). Taking also into account

that F∗ and (G ′)p commute on D for any p ∈ N0 (Proposition 4.1 iv)), we find

〈
0, eiG ′
F
〉 = 〈e−iG ′


0, F
〉 =
∞∑

p=0

(−i)p

p! 〈F∗(G ′)p
0, 
〉

=
∞∑

p=0

(−i)p

p! 〈(G ′)p F∗
0, 
〉

= 〈e−iG ′
F∗
0, 
〉 = 〈
0, FeiG ′


〉.
As D ⊂ H is dense, this implies eiG ′

F
 = FeiG ′

. Clearly, this identity then also

holds when eiG ′
is replaced by any operator in the ∗-algebra A generated (algebrai-

cally) by the eiφR,−Q(g′
1), g′

1 ∈ S1(W ′
0) real. But any A′ ∈ M′

R,Q is a weak limit of a
sequence A′

n in A, and A′
n F
 = F A′

n
 is stable under weak limits. Thus we arrive at
A′F
 = F A′
 for all 
 ∈ dom F , i.e., F is affiliated with MR,Q .



G. Lechner

Proceeding to the polar decomposition F = V |F | and the spectral projections En of
|F | onto spectrum in the interval [0, n], we have V, En|F | ∈ MR,Q for all n ∈ N. Now
let SR,Q denote the Tomita operator of (MR,Q,	). As SR,Q V En|F |	 = |F |En V ∗	,
the strong convergence En → 1 as n → ∞ and the closedness of SR,Q imply that F	
lies in the domain of SR,Q , and SR,Q F	 = F∗	.

As all these considerations apply in particular to the special case R = 1, we have
now gathered sufficient information for establishing i). Let S denote the Tomita operator
of the undeformed algebra M := M1,Q w.r.t.	, and let f ∈ S (W0) as above. Making
use of (4.6), we find

SR,Qφ( f )	 = SR,QφR,Q( f )	 = φR,Q( f )∗	 = φR,Q( f ∗)	 = φ( f ∗)	 = φ( f )∗	
= Sφ( f )	,

i.e., SR,Q and S coincide on the subspace φ(S (W0))	. But this domain is a core for
S = J�1/2 because it is dense and the modular group �i t acts as the Lorentz boosts
�1(2π t) which leave W0 invariant [BW75]. As S and SR,Q are closed operators, this
shows that SR,Q is an extension of S, i.e., SR,Q ⊃ S.

We now consider the commutants M′
R,Q, M′. By modular theory, their Tomita oper-

ators w.r.t. 	 are the adjoints S∗
R,Q, S∗. In complete analogy to above, one can show

that for f ′ ∈ S (W ′
0), the operator φR,−Q( f ′) is affiliated with M′

R,Q , and

S∗
R,Qφ( f ′)	 = S∗

R,QφR,−Q( f ′)	 = φR,−Q( f ′)∗	 = φ( f ′)∗	 = S∗φ( f ′)	.

Since φ(W ′
0)	 is a core for S∗, this shows S∗

R,Q ⊃ S∗, or, equivalently, SR,Q = S∗∗
R,Q ⊂

S∗∗ = S. Together with the previously established extension SR,Q ⊃ S, this yields
SR,Q = S. The identities�R,Q = � and JR,Q = J then follow from the uniqueness of

the polar decomposition SR,Q = JR,Q�
1/2
R,Q .

As the Bisognano-Wichmann property (5.3) is known to hold for the free field the-
ory [BW75], ii) follows immediately from i). The transformation law (4.8) of the field
implies U (0, j)MR,QU (0, j) = M̂R,Q by extension from analytic vectors. By Tomi-
ta’s theorem, this yields

M̂R,Q = U (0, j)MR,QU (0, j) = JR,QMR,Q JR,Q = MR,Q
′,

which proves iii). ��
Von Neumann algebras with modular data identical to the geometric ones found in

free field theory have been studied as a possible tool in the construction of quantum field
theories before [Wol92,LMW00]. It is therefore interesting to note that the deformation
construction presented here establishes a new infinite family of solutions to this inverse
problem in modular theory.

For a formulation of our models in the framework of algebraic quantum field theory,
we now consider the von Neumann algebras

AR(W ) := U (x,�)MR,QU (x,�)−1, (5.4)

where W is a wedge and (x,�) ∈ P+ is any Poincaré transformation satisfying �W0 +
x = W . (We have suppressed the dependence of the left hand side on Q here because Q
is transformed by �.) The transformation behaviour of the field φR,Q( f ) implies that
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(5.4) is well-defined, i.e. independent of the choice of (x,�). Furthermore, we have,
W, W̃ ∈ W ,

AR(W ) ⊂ AR(W̃ ) for W ⊂ W̃ ,

AR(W ) = AR(W
′)′,

U (x,�)AR(W )U (x,�)−1 = AR(�W + x),

where in the last line, (x,�) ∈ P+ is arbitrary. In view of the unitarity of U , it is also
clear that 	 is cyclic and separating for each AR(W ), W ∈ W . We summarize these
findings in the following proposition.

Proposition 5.3. Let R be a deformation function and Q an admissible matrix. The
map AR : W � W �−→ AR(W ) ⊂ B(H) (5.4) is an isotonous, Haag-dual net of von
Neumann algebras which transforms covariantly under the adjoint action of U, and the
vacuum vector 	 is cyclic and separating for each AR(W ), W ∈ W .

To conclude this section, we point out two further properties of the nets AR . On the
one hand, these nets are true deformations of the free net A1, i.e., not unitarily equivalent
to A1 for R �= 1. On the other hand, as is well known, it is possible to extend AR to
arbitrary regions in Minkowski space by taking intersections of the algebras AR(W ).
For a double cone O ⊂ R

d , one puts

AR(O) :=
⋂

W⊃O
W∈W

AR(W ), (5.5)

and the algebras AR(G) for general subsets G ⊂ R
d can be defined by additivity.

This yields an assignment O �→ AR(O) of subsets of R
d to von Neumann algebras

which also has the properties of isotony, locality, and covariance. However, in the case
at hand the algebras associated with regions smaller than wedges do no longer have the
Reeh-Schlieder property if R �= 1 and d > 1 + 1.

Both these properties, the inequivalence to the free net and the local violation of
the Reeh-Schlieder property, can be derived from the scattering properties computed in
Sect. 4 by making use of the methods in [BBS01,Mun10]. However, we will give an
alternative proof here which emphasizes the structure of the deformation rather than the
S-matrix (cf. [BLS10,DLM11,Mor11]).

Proposition 5.4. Let d > 1 + 1, R �= 1 a deformation function, and Q an admissible
matrix.

i) Let C = x +
⋃
λ>0 λO be a spacelike cone for some x ∈ R

d and a double cone O
whose closure is spacelike separated from the origin. Then the subspace AR(C)	 ⊂
H is not dense.

ii) There exists no unitary V ∈ B(H) such that V MR,Q V ∗ = M1,Q and

[V,U (x,�)] = 0 for all (x,�) ∈ P↑
+ .

Proof. i) As the Poincaré transformations U (x,�) are unitary and leave 	 invari-
ant, it is sufficient to consider a cone C which lies spacelike to the standard
wedge, W0 ⊂ C ′. Moreover, because of the geometric shape of C , we find a dou-
ble cone O0 ⊂ W0, and a Lorentz transformation � ∈ L↑

+, such that �W0 �= W0
and �−1W0 ⊂ C ′, �O0 ⊂ W0. For any real testfunction f1 = f ∗

1 ∈ S1(O0),



G. Lechner

the selfadjoint field operators φR,Q( f1) and φR,Q(α� f1) are then affiliated with
AR(W0) ⊂ AR(C)′, and U (�)−1φR,Q(α� f1)U (�) = φR,�−1 Q�( f1) is affiliated
with AR(�

−1W0) ⊂ AR(C)′. Taking into account these affiliation properties and
(4.6), we find for any A ∈ AR(C), g1 ∈ S1,

〈A	, φR,Q( f1)φ(g1)	〉 = 〈φR,Q( f1)A	, φ(g1)	〉
= 〈AφR,Q( f1)	, φ(g1)	〉
= 〈Aφ( f1)	, φ(g1)	〉
= 〈AφR,�−1 Q�( f1)	, φ(g1)	〉
= 〈φR,�−1 Q�( f1)A	, φ(g1)	〉
= 〈A	, φR,�−1 Q�( f1)φ(g1)	〉.

Now if AR(C)	 ⊂ H would be dense we could conclude φR,Q( f1)φ(g1)	 =
φR,�−1 Q�( f1)φ(g1)	 from this calculation. But since �W0 �= W0, we have
�−1 Q� �= Q, and a straightforward calculation shows that the vectors φR,Q( f1)

φ(g1)	 andφR,�−1 Q�( f1)φ(g1)	 are different for general f1, g1. HenceAR(C)	 ⊂
H is not dense.

ii) Assume a unitary V with the specified properties exists. Then, by the definition of the
wedge algebras (5.4), V AR(W )V ∗ = A1(W ), W ∈ W , and also V AR(O)V ∗ =
A1(O) for all double cones O in view of (5.5). Furthermore, as V commutes with
all translations and	 is the unique translationally invariant vector in H (up to multi-
ples), we have V	 = eiα 	 for some α ∈ R. Since V is unitary, and A1(O)	 ⊂ H
is dense for any double cone O by the Reeh-Schlieder property of the free field, we
thus find that AR(O)	 = V ∗A1(O)V	 = V ∗A1(O)	 ⊂ H is dense as well. But
this contradicts i). ��
Part i) of this proposition does not hold in d = 1 + 1 dimensions (also not if spacelike

cones are replaced by double cones), as we will see in the next section. Part ii) is still
valid also in d = 1+1, because the S-matrix provides an invariant to distinguish between
inequivalent nets.

6. Integrable Models as Deformations of Free Field Theories

Up to this point, the dimension d ≥ 1 + 1 of spacetime did not play any role in our
constructions. Now we will consider the special case d = 1 + 1 of a two-dimensional
Minkowski space. The matrix Q appearing in the deformation two point function then
has the form (3.28),

Q = λ

(
0 1
1 0

)

, λ ∈ R. (6.1)

In two dimensions, it is convenient to parametrize the upper mass shell of mass m > 0
by the rapidity θ ∈ R according to p(θ) := m(cosh θ, sinh θ). Inserting this parametri-
zation into the deformation two point function (3.26) yields

ρ2(p(θ1), p(θ2)) = R(−p(θ1) · Qp(θ2)) = R(λm2 sinh(θ1 − θ2)), θ1, θ2 ∈ R,

(6.2)
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and we denote the square of this function by

Sλ : R → C, Sλ(θ) := R(λm2 sinh θ)2. (6.3)

As mentioned earlier, R is analytic on the upper half plane because of the half-sided
support of its Fourier transform. As the hyperbolic sine is an entire function mapping
the strip S(0, π) := {ζ ∈ C : 0 < Im ζ < π} onto the upper half plane, this implies
that Sλ, λ ≥ 0, extends to an analytic function on S(0, π), with distributional boundary
values at R and R + iπ . From the properties (3.22) of R and sinh, it is obvious that

Sλ(θ) = Sλ(θ)
−1 = Sλ(−θ) = Sλ(θ + iπ), λ, θ ∈ R. (6.4)

These relations are well known from the analysis of completely integrable quantum field
theories with factorizing S-matrices on two-dimensional Minkowski space [AAR91],
where they express the unitarity, hermitian analyticity, and crossing symmetry [BFK06]
of a two-particle S-matrix of such a model. Here these properties show up as a conse-
quence of our deformation construction.

Not only the typical relations of a factorizing S-matrix appear here, but also the charac-
teristic algebraic structure known as the Zamolodchikov-Faddeev algebra [ZZ79,Fad84]:
For the rapidity space creation/annihilation operators zλ(θ) := aR,Q(p(θ)), z†

λ(θ) :=
a†

R,Q(p(θ)), the relations (4.24) (with both Q and Q′ replaced by (6.1)) read

zλ(θ1)zλ(θ2) = Sλ(θ1 − θ2) zλ(θ2)zλ(θ1),

z†
λ(θ1)z

†
λ(θ2) = Sλ(θ1 − θ2) z†

λ(θ2)z
†
λ(θ1),

zλ(θ1)z
†
λ(θ2) = Sλ(θ2 − θ1)z

†
λ(θ2)zλ(θ1) + δ(θ1 − θ2) · 1.

This is precisely the Zamolodchikov-Faddeev algebra. In the context of factorizing
S-matrices, it is mostly used as an auxiliary structure to organize n-particle scattering
states (see, for example, [CA01]). However, it is also possible to take it as a starting
point for the construction of model theories.

This latter point of view has been taken by Schroer, who suggested to use the fields
φλ(x) := ∫ dθ (eip(θ)·x z†

λ(θ) + e−i p(θ)·x zλ(θ)) as wedge-local polarization-free gener-
ators for constructing quantum field theories [Sch97]. Although this construction was
originally formulated independently of deformation ideas, the same fields also appear
in the present setting, and coincide with the deformed fields φR,Q from the previous
section. In the two-dimensional context, their properties as listed in Proposition 4.1
were known already in case the scattering function S satisfies (6.4) and is analytic and
bounded on the strip S(0, π) [Lec03].

Full-fledged quantum field theories based on these deformed fields have been con-
structed in the framework of algebraic quantum field theory [Haa96]: After passing from
the wedge-local fields to corresponding nets of von Neumann algebras, operator-alge-
braic techniques become available for the analysis of the local observable content of
these models [BL04]. We recall from [Lec06,Lec08] that if S is regular in the sense that
it has a bounded analytic extension to the strip {ζ ∈ C : −ε < Im ζ < π + ε} for some
ε > 0, then the quantum field theory generated by φλ contains observables localized
in double cones, at least for the radius of the double cone above some minimal size. In
fact, there exist so many such local observables that they generate dense subspaces from
the vacuum, as it is typical in quantum field theory (Reeh-Schlieder property). Also all
other standard properties of quantum field theory are satisfied by these models, and the
factorizing S-matrix with scattering function S can be recovered from their n-particle
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collision states [Lec08]. We note this relation between multiplicative deformations and
integrable models as the following theorem.

Theorem 6.1. On two-dimensional Minkowski space, every integrable quantum field
theory with scattering function S of the form (6.3) arises from a free field theory by a
(multiplicative) deformation. If S is regular, then the deformed theory is local in the
sense that the vacuum is cyclic for all observable algebras associated with double cones
above a minimal size [Lec08, Thm. 5.6].

Although the structure of integrable quantum field theories is quite simple, the impor-
tant message for the deformation technique presented here is that this method is capable
of deforming covariant local free quantum field theories to covariant local interacting
quantum field theories. For the deformed models to contain sufficiently many local
observables, we only have to select the deformation function R in such a way that S
(6.3) is regular. For example, this is the case for the finite Blaschke products

R(a) =
N∏

k=1

zk − a

zk + a
, (6.5)

where the zeros z1, . . . , zN lie in the upper half plane and occur in pairs zk,−zk (3.24).

7. Conclusions

In this paper we have established a family of deformations of quantum field theories,
leading to new models with non-trivial interaction in any number of space-time dimen-
sions d. This result supports the general deformation approach, and shows that it is
possible to use deformation methods for obtaining interacting local field theories from
models without interaction. As interacting quantum field theories in physical spacetime
must necessarily involve particle production processes [Åks65], and particle production
was ruled out here because of the relatively simple form of the multiplicative deforma-
tions, the obtained models are not yet physically realistic. In two space-time dimensions,
they have the structure of integrable models, and there are indications that the family of
integrable models which can be realized in this manner is actually much larger than the
one discussed here4. For models on higher-dimensional Minkowski space, however, one
needs to allow for particle production processes already on the level of the deformation
maps, and replace the multiplicative deformations by more general integral operators
(3.4). Apart from these modifications, it seems to be possible to use the same approach
as presented here to realize also interactions with momentum transfer and particle pro-
duction by deformation methods.

From a structural point of view, it is desirable to uncouple the deformations from the
specific form of the Borchers-Uhlmann tensor algebra. This has been achieved in the
case of the warped convolutions [BS08], which are formulated in such a way that they
are applicable to any vacuum quantum field theory [BLS10]. Such an operator-algebraic
reformulation of the deformations studied here is currently under investigation.

Regarding the operator-algebraic structure, we have shown that the modular data of
the von Neumann algebras associated with wedge-local deformed quantum fields rep-
resented in compatible states are identical to those in the undeformed theory. This is
essentially a consequence of the compatibility of the deformations with the ∗-involu-
tion and unit element of S , and can therefore be expected to be a generic feature of

4 S. Alazzawi, C. Schützenhofer, Work in progress.
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deformations of quantum field theories. This feature connects our deformation approach
to another approach to the construction of quantum field theories, based on the inverse
problem in modular theory [LMW00]. Furthermore, also the root of the S-matrix plays a
role in both, our present setting, where it appears in the deformation two-point function,
and in the context of inverse problems in modular theory, where it is used to identify mod-
ular conjugations [Wol92]. These interesting connections require further investigation,
which will be presented elsewhere.
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Alazzawi, Jan Schlemmer, Jakob Yngvason, and Sergio Yuhjtman. Many thanks go also to Stefan Waldmann
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